Central idea
〖cot〗^(-1) x= θ
Domain
(-∞,+∞)
Range
(0, π)
〖csc〗^(-1) x= θ
Domain
(-∞,-1]∪[1,+∞)
Range
[-π/2, π/2], θ≠0
〖sin〗^(-1) x= θ
Domain
(-∞,-1]∪[1,+∞)
Range
[0, π], θ≠π/2
〖tan〗^(-1) x= θ
Domain
(-∞,+∞)
Range
(-π/2, π/2)
〖cos〗^(-1) x= θ
Domain
[-1,1]
Range
[0, π]
〖sin〗^(-1) x= θ
Domain
[-1,1]
Range
[-π/2, π/2]
cotθ
Domain
R-nπ
Range
(-∞,+∞)
Period
π
cscθ
Domain
R-nπ
Range
(-∞,-1]∪[+1,+∞)
Period
2π
secθ
Domain
R-(2n+1)π/2
Range
(-∞,-1]∪[+1,+∞)
Period
2π
tanθ
Domain
R-(2n+1)π/2
Range
(-∞,+∞)
Period
π
cosθ
Domain
(-∞,+∞)
Range
[-1,+1]
Period
2π
sinθ
Domain
(-∞,+∞)
Range
[-1,+1]
Period
2π
Product to Sum
sinα sinβ=1/2 [ cos(α-β) - cos(α+β) ]
cosα cosβ=1/2 [ cos(α-β) + cos(α+β) ]
sinα cosβ=1/2 [ sin(α+β) + sin(α-β) ]
cosα sinβ=1/2 [ sin(α+β) - sin(α-β) ]
Sum to Product
sinα ± sinβ=2 sin1/2 (α±β) cos1/2 (α∓β)
cosα + cosβ=2 cos1/2 (α+β) cos1/2 (α-β)
cosα - cosβ= - 2 sin1/2 (α+β) sin1/2 (α-β)
Even/Odd Identities
cos(-θ)=cosθ
sin(-θ)=-sinθ
tan(-θ)=-tanθ
cot(-θ)=-cotθ
csc(-θ)=-cscθ
sec(-θ)=secθ
Cofunction Identities
sin(π/2-θ)=cosθ and cos(π/2-θ)=sinθ
tan(π/2-θ)=cotθ and cot(π/2-θ)=tanθ
csc(π/2-θ)=secθ and sec(π/2-θ)=cscθ
Sum/Difference Identities
sin(α±β) = sinα cosβ ± cosα sinβ
cos(α±β) = cosα cosβ ∓ sinα sinβ
tan(α±β) = (tanα ± tanβ)/(1 ∓ tanαtanβ)
Double Angle Identities
sin(2θ) = 2sinθ cosθ
cos(2θ) = cos^2(θ) - sin^2(θ)
cos(2θ) = 2 cos^2 (θ) - 1
cos(2θ) = 1 - 2sin^2(θ)
tan2θ = 2tanθ / 1 - tan^2(θ)
Half Angle Identities
sin^2(θ) = (1 - cos2θ)/2
cos^2(θ) = (1 + cos2θ)/2
tan^2(θ) = (1 - cos2θ) / (1 + cos2θ)
Pythagorean Identities
〖sin〗^2 θ+〖cos〗^2 θ=1^
〖sec〗^2 θ-〖tan〗^2 θ=1^
〖csc〗^2 θ-〖cot〗^2 θ=1^
Reciprocal Identities
sinθ=1/cscθ and cscθ=1/sinθ
cosθ=1/secθ and secθ=1/cosθ
tanθ=1/cotθ and cotθ=1/tanθ
Quotient Identities
tanθ=sinθ/cosθ
cotθ=cosθ/sinθ