Categorías: Todo - bonding - ionic - covalent - electrons

por Yun Shan hace 12 años

1507

Chemcial/ionic bonding

A chemical bond represents the attraction between atoms, primarily influenced by the behaviors of their outermost electrons. These behaviors result in various types of bonds, with ionic and covalent bonds being the most significant.

Chemcial/ionic bonding

Chemcial bonding

In general, strong chemical bonding is associated with the sharing or transfer of electrons between the participating atoms. The atoms in molecules, crystals, metals and diatomic gases— indeed most of the physical environment around us— are held together by chemical bonds, which dictate the structure and the bulk properties of matter.

Since opposite charges attract via a simple electromagnetic force, the negatively charged electrons that are orbiting the nucleus and the positively charged protons in the nucleus attract each other. Also, an electron positioned between two nuclei will be attracted to both of them. Thus, the most stable configuration of nuclei and electrons is one in which the electrons spend more time between nuclei, than anywhere else in space. These electrons cause the nuclei to be attracted to each other, and this attraction results in the bond. However, this assembly cannot collapse to a size dictated by the volumes of these individual particles. Due to the matter wave nature of electrons and their smaller mass, they occupy a much larger amount of volume compared with the nuclei, and this volume occupied by the electrons keeps the atomic nuclei relatively far apart, as compared with the size of the nuclei themselves.

A chemical bond is an attraction between atoms that allows the formation of chemical substances that contain two or more atoms. The bond is caused by the electromagnetic force attraction between opposite charges, either between electrons and nuclei, or as the result of a dipole attraction. The strength of chemical bonds varies considerably; there are "strong bonds" such as covalent or ionic bonds and "weak bonds" such as dipole–dipole interactions, the London dispersion force and hydrogen bonding.

A chemical bond is an attraction between atoms. This attraction may be seen as the result of different behaviors of the outermost electrons of atoms. Although all of these behaviors merge into each other seamlessly in various bonding situations so that there is no clear line to be drawn between them, nevertheless behaviors of atoms become so qualitatively different as the character of the bond changes quantitatively, that it remains useful and customary to differentiate between the bonds that cause these different properties of condensed matter.

Covalent bonding

A coordinate covalent bond is one where both bonding electrons are from one of the atoms involved in the bond. These bonds give rise to Lewis acids and bases. The electrons are shared roughly equally between the atoms in contrast to ionic bonding. Such bonding occurs in molecules such as the ammonium ion (NH4+) and are shown by an arrow pointing to the Lewis acid. Also known as non-polar covalent bond, the electronegativity of these bonds range from 0 to 0.3. Molecules which are formed primarily from non-polar covalent bonds are often immiscible in water or other polar solvents, but much more soluble in non-polar solvents such as hexane.
A polar covalent bond is a covalent bond with a significant ionic character. This means that the electrons are closer to one of the atoms than the other, creating an imbalance of charge. They occur as a bond between two atoms with moderately different electronegativities, and give rise to dipole-dipole interactions. The electronegativity of these bonds is 0.3 to 1.7
Covalent bonding is a common type of bonding, in which the electronegativity difference between the bonded atoms is small or nonexistent. Bonds within most organic compounds are described as covalent. See sigma bonds and pi bonds for LCAO-description of such bonding.

Ionic bonding

An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. Pure ionic bonding cannot exist: all ionic compounds have some degree of covalent bonding. Thus, an ionic bond is considered a bond where the ionic character is greater than the covalent character. The larger the difference in electronegativity between the two atoms involved in the bond, the more ionic (polar) the bond is. Bonds with partially ionic and partially covalent character are called polar covalent bonds. Ionic bonding is a form of noncovalent bonding. Ionic compounds conduct electricity when molten or in solution, but not as a solid. They generally have a high melting point and tend to be soluble in water.
In the real world ionic compounds don't actually exist as ion-pairs which were formed from naturally occurring gaseous atoms. Instead, they exist as crystalline solids consisting of many ions, each cation being surrounded by anions and each anion being surrounding by cations to form a crystal lattice. Each cation-anion pair represents the release of energy. Therefore, the reaction of the solid sodium atoms and the diatomic chlorine gas molecule to form the ionic solid sodium chloride can be broken down into 5 steps.
1.Vaporize the sodium atoms into gaseous sodium atoms. (use heat of vapaorization) 2.Dissociate the chlorine molecules into chlorine atoms. (use bond energy) 3.Ionize the sodium atoms. This is the oxidation step. (use ionization energy) 4.Add electron to chlorine atoms to form chloride ions. This is the reduction step. (use electron affinity) 5.Formation of the crystal lattice (use lattice energy) 6.The overall change in energy for the reaction
Bond formed between oppositely charged ions because of electrostatic forces of attraction.
Example: sodium + chlorine ----> sodium chloride
Ionic bonding is a type of electrostatic interaction between atoms which have a large electronegativity difference. There is no precise value that distinguishes ionic from covalent bonding, but a difference of electronegativity of over 1.7 is likely to be ionic, and a difference of less than 1.7 is likely to be covalent.[4] Ionic bonding leads to separate positive and negative ions. Ionic charges are commonly between −3e to +3e. Ionic bonding commonly occurs in metal salts such as sodium chloride (table salt). A typical feature of ionic bonds is that the species form into ionic crystals, in which no ion is specifically paired with any single other ion, in a specific directional bond. Rather, each species of ion is surrounded by ions of the opposite charge, and the spacing between it and each of the oppositely charged ions near it, is the same for all surrounding atoms of the same type. It is thus no longer possible to associate an ion with any specific other single ionized atom near it. This is a situation unlike that in covalent crystals, where covalent bonds between specific atoms are still discernible from the shorter distances between them, as measured by with such techniques as X-ray diffraction.