INTEGRALES

DEFINCIÓN: una función F(x) es antiderivada
de f(x) si F'(x)=f(x) para cada x en el dominio de la función.

INTEGRAL DEFINIDA: APLICA PARA UNA FUNCIÓN CONTÍNUA DEFINIENDO SUS LIMITES SUPERIOR E INFERIOR [A,B]

INTEGRAL DEFINIDA: APLICA PARA UNA FUNCIÓN CONTÍNUA DEFINIENDO SUS LIMITES SUPERIOR E INFERIOR [A,B]

Por partes: usamos éste método cuando observamos una multiplicación de dos funciones, usamos la fórmula; Ejemplo: ∫(xe^x)dx;

Por partes: usamos éste método cuando observamos una multiplicación de dos funciones, usamos la fórmula; Ejemplo: ∫(xe^x)dx; donde u=x, v=e^x,du=dx, Entonces= x.e^x-∫(e^x).dx

INTEGRALES TRIGONOMÉTRICAS: usamos identidades trigonométricas dependiendo del caso.

Funciones con potencia par, se usa la identidad del ángulo medio: Ejemplo: ∫cos^6dx

Una potencia par y otra impar: Ejemplo:
∫(sin^6xcos^3x)dx

Ambas potencias son pares y se usa la identidad del ángulo medio:
Ejemplo: ∫(sec^4xtan^2x)dx

SUSTITUCIÓN TRIGONOMÉTRICA

* a es positiva y bx^2 es negativa. Se usa:
x=(a/b)Sin­­♀; sin♀=bx/a; Ejemplo:∫√(4-2x²)dx

* a es positiva y bx^2 es positiva. Se usa:
x=(a/b)Tan♀; Tan♀=bx/a; Ejemplo:∫x√(x²+4)dx

* a es negativa y bx^2 es positiva. Se usa:
x=(a/b)Sec♀; Sec♀=bx/a; Ejemplo:∫dx/x²√(16x²-9)dx

APLICACIONES: problemas de valor inicial, valor promedio y variación

DIRECTA: usamos la definición para resolverla. Ejemplo:

DIRECTA: usamos la definición para resolverla. Ejemplo:

SUSTITUCIÓN SIMPLE: se usa un cambio de variable para obtener una integral mas sencilla. Ejemplo:

SUSTITUCIÓN SIMPLE: se usa un cambio de variable para obtener una integral mas sencilla. Ejemplo:

Integración por Fracciones parciales: se encarga de resolver funciones racionales del tipo ∫[P(x)/Q(x)]dx. Se presentan varios casos:

CASO 2-EL DENOMINADOR CONTIENE FACTORES CUADRÁTICOS DISTINTOS:
(A1x + B1/a1x^2+b1x+c1)+...+(Anx+Bn/anx^2+bnx+cn)

CASO 1-EL DENOMINADOR CONTIENE FACTORES CUADRÁTICOS REPETIDOS:
(A1x + B1/a1x^2+b1x+c1)+(A2x+B2/a1x^2+b1x+c1)^2+...+(Anx+Bn/a1x^2+b1x+c1)^n

CASO 4-DENOMINADOR CON FACTORES
LINEALES DISTINTOS:
(A1/a1 +x)+(A2/a2+x)+...+(An/an+x)

CASO 3-EL DENOMINADOR ES PRODUCTO DE VARIOS FACTORES Y ALGUNOS SE REPITEN:
(A1/a1 +x)+(A2/a1+x)^2+...+(An/a1+x)^n