Catégories : Tous - pitágoras - filósofo - teorema - matemáticas

par DANIELA YETZEMANY VELAZQUEZ TREJO Il y a 3 années

317

Organigrama

La distinción entre filósofos y sofistas no era clara hasta el siglo XIX, cuando Hegel hizo una comparación entre ambos. En la antigua Grecia, los filósofos a menudo se asemejaban más a la imagen de un borrachín que a la de un pensador culto.

Organigrama

preparatoria 115 emiliano zapata velazquez trejo daniela 1°7M teorema de pitagoras act 1 16 abril del 2021

Hasta el siglo XIX no existiría una distinción clara entre filósofo y sofista. Fue Hegel el que comparó esta antigua dicotomía con la diferencia existente entre un gourmet amante del vino y un viejo borrachín, a pesar de que, por desgracia, los filósofos griegos guardarían un notable parecido con esta última imagen durante varios siglos todavía. Es casi seguro que fue durante aquellos años en Crotona cuando Pitágoras llevó a cabo el grueso de su obra matemática, incluyendo el descubrimiento de su celebrado teorema . Como ya hemos visto, a los babilonios les faltó el canto de un duro para descubrir la fórmula que hoy en día conocemos como Teorema de Pitágoras. Sabían que si los catetos de un triángulo rectángulo median 3 y 4 unidades respectivamente, su hipotenusa tendría 5 unidades de longitud

De tales circunstancias puede concluirse que los babilonios no llegaron a descubrir la existencia de los números irracionales. Más significativo resulta el hecho de que, a juzgar por la tablilla de Yale, los babilonios se habían acercado bastante al descubrimiento del teorema que haría famoso a Pitágoras, y conocían la relación existente entre los catetos de un triángulo rectángulo y su hipotenusa, si bien no habían dado con una fórmula simple que expresase tal relación

A pesar de que tales encuentros parecen bastante improbables, no pueden descartarse así como así.

Los puertos fenicios de Tiro y Sidón eran terminales de las rutas comerciales orientales, que ya se extendían hasta la India, y las tropas de Alejandro Magno las utilizarían dos siglos después. Pitágoras adquirió mucho más que conocimientos matemáticos en sus viajes
El problema estriba en nuestra casi completa ignorancia del verdadero carácter de Pitágoras.

Pero semejantes logros no se producirían hasta que Pitágoras regresase finalmente a Samos después de sus viajes

El protocolo reinante en la corte de cualquier tirano es especialmente estricto en este punto, y Pitágoras pagó su error. Como resultas de su encontronazo con el jefe, Pitágoras fue desterrado de Samos por siempre jamás. De acuerdo con una leyenda bastante extendida, primero fue encarcelado, y al sur de la isla sigue existiendo en la ladera de una montaña una tenebrosa y remota caverna que se dice fue el calabozo de Pitágoras.

Otro de los grandes descubrimientos a los que conduce el teorema de Pitágoras eran los números irracionales.

Cuando un triángulo rectángulo tiene dos lados de una unidad, su hipotenusa es sencillamente inexpresable en términos de esa unidad.

Además, Pitágoras llevó a cabo extensas investigaciones prácticas, particularmente en el campo de la armonía musical.topic

Sólo existen dos triángulos pitagóricos cuyas áreas igualen a sus perímetros . La transformación de las matemáticas en una ciencia puramente abstracta, que debemos a los griegos, permitía que tales posibilidades pudieran ser exploradas

SubtoPor el momento, seguiré atribuyendo las principales ideas pitagóricas al mismo Pitágoras, sugiriendo a continuación los descubrimientos que pudieran haber sido obra de sus discípulos. El descubrimiento del teorema de Pitágoras conduce a una serie de fascinantes descubrimientos sobre los triángulos rectángulos de lados cuya longitud es un número entero .

Se sabe que Teremessus, colonia de Samos en la Península Ibérica, mantenía relaciones comerciales con Bretaña y con las minas de estaño del sudoeste de Gran Bretaña. De forma análoga, si bien es probable que Pitágoras no hubiese llegado a Persia o a la India, es muy posible que pudiese haber aprendido las técnicas de los magos y de los brahmanes al pasar por Fenicia camino de Babilonia.
Tales iniciaciones puede que se produjeran en aras de la investigación intelectual, pero resulta evidente que los viajes de Pitágoras eran algo más que una búsqueda religiosa

Samos tampoco se encontraba en una situación demasiado favorable ya que su riqueza había empezado a despertar la envidia de otras potencias del Egeo, tales como Esparta o Atenas, cuya indignación, además, era cada vez mayor por la idea de comercio marítimo que tenía Polícrates. Lo que es aún peor, el Imperio Persa estaba en plena expansión hacia las costas del continente asiático menor, cuyo punto más cercano se encontraba sólo a un kilómetro y medio de Samos, al otro lado del estrecho.

Sin embargo, el apostar por un caballo equivocado no parece haber sido la causa de la perdición de Pitágoras, y su caída en desgracia por lo que a Polícrates se refiere fue un asunto personal.

Según se cuenta, el filósofo Anaxímedes, un pupilo rival de Anaximandro, describió a Pitágoras como «el más perseverante de todos en su búsqueda de conocimientos», dicho lo cual se dedicó concienzudamente a desvirtuar los frutos de esta búsqueda, calificándolos de disparates. De forma análoga, la rivalidad existente entre Samos y el continente jónico no se limitaba al comercio. El filósofo jónico Heráclito dejó patente su opinión de que «mucho aprendizaje no conduce al sentido común, de otra forma se lo habría dado a Pitágoras».

Algunos sugieren que Pitágoras, en su modestia, no se consideraba a sí mismo un sabio, sino sólo como un hombre irremisiblemente atraído por la sabiduría, en pos de la cual corría sin cesar, si bien no llegaba nunca a alcanzarla.

Como Pitágoras no dejó nada escrito, no tenemos constancia de las pruebas que realizó para comprobar su teorema. Unos dos siglos después, el geómetra Euclides dejó escritas varias pruebas de este teorema en su obra Elementos, la biblia de la geometría durante más de dos milenios y, con toda probabilidad, al menos una de las pruebas es de origen pitagórico.

La primera autoridad que atribuyó el descubrimiento del Teorema de Pitágoras al mismo Pitágoras fue el arquitecto romano del siglo I a. C.

Para cuando Pitágoras fue exiliado de Samos, otras personas, a parte de él mismo, empezaban a reconocer su intelecto privilegiado, y sus compatriotas griegos señalaron este hecho de la forma habitual.

A los filósofos anteriores se les conocía como sofistas, término que significa «hombres sabios».

Llamándose a sí mismo filósofo, Pitágoras deseaba probablemente distanciarse de toda esta falsedad, a pesar de que, como podremos comprobar, la concepción que tenía de filosofía superaría con mucho las bufonadas practicadas previamente por cualquier impostor.

De Samos, Pitágoras se dirigió hacia el oeste, llegando finalmente a la Magna Grecia hacia el 529 a

Por entonces Pitágoras se describe a sí mismo como filósofo, y se instala como profesor de esta asignatura, atrayendo rápidamente a un grupo de seguidores que al parecer supieron ver sus cualidades excepcionales desde el principio. En griego, filósofo significa «amante de la sabiduría», y es Pitágoras el primer hombre que se describe a sí mismo como tal.

TEOREMAS DE PITAGORAS

En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

el Chou Pei Suan Ching y el Chui Chang Suang Shu . Su contenido fue sustancialmente ampliado y desarrollado por dos comentaristas del siglo III D.C. Zho Shuang y Liu Hui. Los tratados originales tratan los aspectos primitivos del Teorema, es decir, los resultados numéricos concretos, así como las leyes generales de formación de las ternas pitagóricas, mientras que los aspectos más evolucionados de la demostración son elaborados por Zhao y Liu.
El Teorema de Pitágoras en la India Como resultado de la planificación de templos y de la construcción de altares, entre los siglos octavo y segundo a. C., en la India se desarrollan conocimientos aritmético-geométricos, prácticos y primitivos, relacionados con el Teorema de Pitágoras.pic
La demostración de Bhaskara El monje, matemático y astrónomo hindú, Bhaskara dio una demostración muy sencilla del tipo de congruencia por sustracción, que aparece en el Vijaganita .

La demostración de Leonardo da Vinci Leonardo da Vinci muestra también su ingenio con una prueba del Teorema de Pitágoras del tipo de congruencia por sustracción.

La demostración de Pitágoras de su teorema se basaba muy probablemente en proporciones, y una proporción es un número racional. ¿Sería realmente válida como demostración? Ante esto, Euclides elabora una demostración nueva que elude la posibilidad de encontrarse con números irracionales. El eje de su demostración es la proposición I. En los triángulos rectángulos el cuadrado del lado opuesto al ángulo recto es igual a la suma de los cuadrados de los lados que comprenden el ángulo recto. Basándose en la proposición I.41 de Los Elementos, que equivale a decir que a igual base y altura, el área del paralelogramo dobla a la del triángulo.

El Teorema de Pitágoras en Egipto "Triángulo egipcio", es rectángulo, para trazar una línea perpendicular a otra, que era una práctica habitual de los agrimensores oficiales para recuperar las fronteras de los lindes de las tierras tras los periódicos corrimientos producidos por las crecidas del Nilo.

FRASES DE PITÁGORAS

Educar no es dar carrera para vivir, sino templar el alma para dificultades de la vida

No digas pocas cosas en muchas palabras, sino muchas cosas en pocas palabras
Evitad todo aquello que pueda atraer a la envidia.

No veas en tu enemigo más que un amigo extraviado.

Pitágoras

el teorema de Pitágoras

Pitágoras fue el primero en comprobar la relacion que se cumple en todos los triángulos rectángulos
el teorema de Pitágoras dice que en todo triangulo rectángulo se cumple la suma de los cuadros de los catetos es igual al cuadrado de la hipotenusa

el teorema de Pitágoras si habla de un triangulo pero a lo que se refiere es a los cuadrados que se pueden dibujar en cada uno de los lados del triangulo

el area del cuadrado de lado de la hipotenusa es igual al area de los dos cuadrados pequeños

c al cuadrado = a al cuadrado + b al cuadrado

triangulo

En un triangulo su lado mas largo se llama hipotenusa

los lados adyacentes al Angulo recto se llaman catetos

a cuadrada es = b cuadrada + c cuadrada es la formula

un triangulo rectángulo es llamado así cuando uno de sus ángulos interiores es de 90 grados y la suma de todos sus angulos interires da como resultado 180 grados

en todos los triángulos la suma de sus ángulos interiores da 180 grados

al conocer dos de las medidas de un triangulo podemos hallar la restante aplicando el teorema de Pitágoras

Tales ,Pitagoras y Anaximandro

Fue Tales el primero que tuvo la idea de que el mundo se había originado a partir de una sola substancia
Por el contrario, la explicación de Tales se podría incluir más bien en el campo de la suposición inspirada

A pesar de que sin duda Anaximandro aprendió su oficio gracias a Tales, su imaginación alcanzaba horizontes bastante más amplios, y su punto de vista era bastante más científico

La observación del sol condujo a Anaximandro a la invención del reloj de sol, lo cual es un descubrimiento decisivo para la cultura occidental, ya que, hasta entonces, no había existido ningún método preciso para medir el tiempo

Anaximandro también elaboró un mapa celeste, y conjeturó que los primeros seres vivos fueron generados por rayos de sol al caer sobre una zona pantanosa.

Pero sabemos por otras fuentes que Anaximandro estaba convencido de que el mundo estaba formado por una sola substancia fundamental, y ésta no era ningún elemento conocido, como el agua. Anaximandro se refería a ella como «indeterminada» , y la catalogaba de infinita, atemporal e indestructible.

Podía definirse como una curiosa combinación de filósofo y cuentacuentos.

Anaximandro era un científico-filósofo, Ferécides era un mago-filósofo: ninguno de los dos era matemático.

En realidad, sabemos tan poco sobre la vida de Pitágoras que nos resulta virtualmente imposible distinguir sus ideas de las de sus seguidores

Anaximandro calculó que el sol era 28 veces mayor que la Tierra.

Ya se sabe que el hombre es producto de su tiempo, y Anaximandro fue, al parecer, el mejor maestro que pudo tener el genio fundador de la cultura occidental.

Si Anaximandro quedaba encasillado en el papel de niño prodigio, Ferécides era sin lugar a dudas un mago de la antigua internet filosófica

importante determinar el momento en el que Pitágoras «trabajó primero con las matemáticas y la aritmética».

Para los monumentos grandes se requería una gran cantidad de tales ladrillos y, a fuerza de calcular tales cantidades, los egipcios descubrieron como calcular el número de unidades requeridas para rellenar figuras, tales como el cubo, el cuboide o la pirámide. Para ello desarrollaron un sistema numérico decimal. También les encantaban las fracciones: hay pruebas en papiro de que los egipcios sabían que 2/29 puede expresarse como 1/24 + 1/58 + 1/174 + 1/232. Y no sólo eso: también sabían que esa misma suma podía expresarse como 1/15 + 1/435 o como 1/16 + 1/232 +1/464.

. Acontecimientos posteriores sugieren que no carecía de habilidad en la política, y es improbable que adquiriese tal maestría en otro sitio que no fuese su Samos nativa.pic

Porque según una autoridad de la categoría de Aristóteles, Pitágoras «trabajó primero con las matemáticas y la aritmética, y posteriormente, durante algún tiempo, se dignó a obrar maravillas a la manera de Ferécides».

Hay pruebas históricas de que conocían más propiedades de tales triángulos, incluyendo una trigonometría rudimentaria. Dice la tradición que Tales era capaz de medir la altura de las pirámides valiéndose de la sombra que proyectaban, para lo cual es casi seguro que utilizaba una técnica trigonométrica desarrollada siglos atrás por los egipcios. De Egipto, se dice que Pitágoras partió hacia Babilonia

Una vez más, el predecesor de Pitágoras, Tales, se había beneficiado de este conocimiento, desconocido para los griegos a comienzos del siglo VI.

Parece ser que Pitágoras adquirió sus conocimientos matemáticos durante sus viajes a Egipto.

La computación era una forma de iniciación religiosa que conducía a un nivel espiritual superior, y esta idea impresionaría profundamente a Pitágoras.

La coyuntura política y diplomática de Samos no era nada fácil, y habría requerido el total desarrollo de las habilidades de Pitágoras.

En Atenas comenzaban a construirse los primeros templos de mármol en la Acrópolis, y los primeros filósofos hicieron su aparición en Mileto y en el continente Jónico
Uno de estos filósofos, Anaximandro, sería con el tiempo maestro de Pitágoras.

La filosofía occidental comienza a partir de Tales de Mileto, unos 20 años antes del nacimiento de Pitágoras, lo cual quiere decir que seguía siendo una novedad cuyas posibilidades totales estaban todavía por descubrir

Pitagoras y su teorema

Pitágoras y su teorema www.librosmaravillosos.com Paul Strathern bastante evidente que el mundo está formado por algo más que números, a pesar de que casi dos milenios y medio más tarde Einstein basaría su trabajo en una concepción notablemente parecida.
El mejor ejemplo de la insensatez de Pitágoras fue, sin duda alguna, la religión que fundó, la cual contenía una larga lista de preceptos disparatados que sus practicantes debían seguir.

Pitágoras justificaba esta última prohibición alegando que si se deposita una judía en una tumba nueva y después se cubre durante cuarenta días, la judía toma forma humana

Por otra parte, a Pitágoras se le han atribuido muchas muestras de genio puro, y la más memorable de ellas es, por supuesto, su teorema. Pero el ejemplo más importante del genio de Pitágoras es, con toda probabilidad, el hecho de haber probado el teorema que lleva su nombre. Tal acción introdujo el concepto de prueba en las matemáticas, lo que a su vez significa el comienzo del razonamiento deductivo. Como resultado, las matemáticas dejaron de ser una serie de fórmulas para convertirse en una elaborada y poderosa estructura lógica de gran belleza. Y es que la lógica se utilizaba en matemáticas casi dos siglos antes de que Aristóteles la «inventara».

Antecedentes

Entre los 18 y 20 años, viajó a la ciudad de Mileto y visitó a Tales, si bien ya Tales era un venerable anciano que despertó en Pitágoras el amor por las Matemáticas y la astronomía y fue sin duda quien la indico a viajar a Egipto para aprender más sobre estos temas.
En griego, «cosmos» significa «orden», y Pitágoras lo asignó al mundo por su «perfecta armonía y concierto». Poseemos pocos datos fidedignos de la vida de Pitágoras, a lo cual hay que añadir que todos los descubrimientos que se le atribuyen pudieran muy bien ser fruto del trabajo de cualquiera de sus discípulos. Así es que cabe la posibilidad de que incluso el famoso teorema que lleva su nombre no sea obra suya. Y también en este sentido Pitágoras sienta un precedente en la concepción de «genio» que prevalece en la actualidad, en la que descubrimientos que hacen época y se adjudican a lumbreras, con frecuencia no son sino el resultado del trabajo en equipo de todo un laboratorio, y en la que cuadros atribuidos a genios son producidos en su totalidad por aprendices. Bertrand Russell describió a Pitágoras como «uno de los hombres más importantes desde un punto de vista intelectual que haya vivido jamás, tanto por su sabiduría como por su insensatez»
Tales, impartía las enseñanzas de éste, lecturas a las cuales asistió Pitágoras, y muchas de sus ideas de geometría y cosmología influyeron en su propia visión. Sobre el 535 a C Pitágoras viajó a Egipto

Pólicrates. Fue hecho sacerdote en el templo de Diospolis

Pólícrates rompió sus alianza con Egipto y apoyo a los persas, Pitágoras fue hecho prisionero y llevado a Babilonia. Los babilonios reconocieron en Pitágoras al gran sabio griego, y en vez de estar en una cárcel, dejaron que en su casa tuviera una academia y en lugar de trabajos forzados le autorizaron el estudio de las matemáticas y la astronomía.

Pitágoras nació en la primera mitad del siglo VI a C en la isla griega de Samos
Pitágoras acompañara a su padre en sus viajes para que conociera distintas culturas de los pueblos con los que su padre comerciaba, se sabe que Pitágoras tuvo maestros sabios sirios y caldeos.

La Hermandad Pitagórica Con Pitágoras aparece la nueva forma de vida de una comunidad cerrada, unidas por reglas comunes de vida y por las mismas ideas sobre el alma y sociedad

En los grados más altos, los pitagóricos vivían en completa comunidad de bienes. Pitágoras, fundador de la escuela

La doctrina de los pitagóricos tenía esencialmente carácter religioso, fundamentalmente consistió en que la sustancia de las cosas era el número

Pitágoras fue posiblemente el primer genio que dio la cultura occidental y, al parecer, sentó un precedente al representar esa mezcla de intelecto privilegiado y locura sobresaliente que más tarde se convertiría en ese rasgo tan recurrente dentro de esta subespecie. También es posible que Pitágoras fuese el primer matemático, el primer filósofo y el primer metempsicótico.

Es probable que Pitágoras se viese obligado por estos movimientos insurreccionales, a dejar Crotona para irse a Metaponto.

Matemáticas

La «ciencia matemática» practicada por Pitágoras y los matematikoi difiere del tratamiento de esta ciencia que se lleva a cabo en universidades o instituciones modernas. Los pitagóricos no estaban interesados en «formular o resolver problemas matemáticos», ni existían para ellos «problemas abiertos» en el sentido tradicional del término. El interés de Pitágoras era el de «los principios» de la matemática, «el concepto de número», «el concepto de triángulo» y la idea abstracta de «prueba»ic
Pitágoras reconocía en los números propiedades tales como «personalidad», «masculinos y femeninos», «perfectos o imperfectos», «bellos y feos»

Para los pitagóricos, «las cosas son números», y observaban esta relación en el cosmos, la astronomía o la música. Los pitagóricos demostraron que existen 5 poliedros regulares, solamente

Sólidos perfectos
Ángulos interiores de un triángulo. Encontraron que la suma de los ángulos interiores de un triángulo es igual a dos rectos, así como la generalización de este resultado a polígonos de n - lados. Un triángulo inscrito en un semicírculo es un triángulo rectángulo

Dodecaedro

Los pitagóricos descubrieron que la diagonal de un cuadrado de lado 1 no puede expresarse como un cociente de números enteros. Este evento marca el descubrimiento de los números irracionales. El descubrimiento de los Números perfectos y los Números amigos. Jámblico atribuye a Pitágoras el haber descubierto el par de números amigos Estas ciudades se conocieron con el nombre de "ciudades-estado" o polis. A diferencia de las ciudades de los grandes imperios, que estaban organizadas alrededor del palacio real y del templo, el centro de la polis lo constituía el ágora, un espacio abierto donde los ciudadanos acudían para comerciar y para intercambiar ideas. En el ágora tiene lugar la vida política de la polis, y en ella surge también la filosofía griega. El aspecto orográfico de Grecia hizo que las polis se situaran en su gran mayoría en territorios costeros de difícil acceso y en valles que estaban rodeados por montañas.