par Oscar Rojas Il y a 3 années
437
Plus de détails
Enlaces - https://matemovil.com/media-varianza-y-desviacion-estandar-de-una-variable-aleatoria-discreta/ - https://matemovil.com/media-o-valor-esperado-varianza-y-desviacion-estandar-de-una-variable-aleatoria-continua/
La esperanza matemática o valor esperado es un valor característico de una variable aleatoria. Este valor permite conocer mediante un número ciertas características de dicha variable. En algunas ocasiones este número coincide con el valor de la distribución de la variable aleatoria. Para calcular el valor esperado, denotado como E(X) siendo X la variable aleatoria, se usan las siguientes fórmulas: - Si la variable X es discreta: E(X) = ∑ Xi P(Xi) - Si la variable X es continua: E(X) = ∫ Xi P(Xi) dX (la integral tiene por limite inferior - ∞ y por limite superior +∞) Donde Xi son cada uno de los valores de la variable aleatoria y P(Xi) es la probabilidad correspondiente. Adaptado de: - Rustom, A. (2020). Estadística descriptiva, probabilidad e inferencia. https://repositorio.uchile.cl/bitstream/handle/2250/120284/Rustom_Antonio_Estadistica_descriptiva.pdf?sequence=1&isAllowed=y - Walpole, R. E. (2012). Probabilidad Y Estadística Para Ingeniería Y Ciencias (9.a ed.). PEARSON EDUCACION. https://vereniciafunez94hotmail.files.wordpress.com/2014/08/8va-probabilidad-y-estadistica-para-ingenier-walpole_8.pdf
http://www2.ulpgc.es/hege/almacen/download/27/27373/temavariablesaleatorias.pdf
Thomas Bayes fue un teólogo y matemático inglés, considerado la primera persona en utilizar la probabilidad inductiva. Además, desarrolló un teorema que lleva su nombre: el Teorema de Bayes. Ver más en: - Ibarra, M. (2018, 29 septiembre). Thomas Bayes: Biografía y Aportes. Lifeder. https://www.lifeder.com/thomas-bayes/ La Probabilidad Condicional es aquella que resulta de buscar la probabilidad de un evento, llamémoslo A, que depende de un evento que ha sucedido con anterioridad, nombrémoslo B. Para realizar el cálculo de dicha probabilidad, notada como P(A|B), se utiliza la siguiente fórmula: P(A|B) = P(A∩B) / P(B) Donde: - P(A∩B) es la probabilidad de que ocurra el evento A y el evento B. - P(B) es la probabilidad de que ocurra el evento B. Ejemplo: En una escuela se hizo un estudio y se encontró que: el 20% de los alumnos son buenos estudiantes, 30% son buenos deportistas y un 5% son buenos en ambas cosas, entonces ¿Qué probabilidad hay de que al seleccionar un alumno que sea buen deportista, también sea buen estudiante? Sea: - P(A) = 20 = 0,2 - P(B) = 30 = 0,3 - P(A∩B) = 5 = 0,05 Entonces la probabilidad de que al seleccionar un estudiante bueno en deportes, también sea buen estudiante es: P(A|B) = 0,05 / 0,3 = 0,166 = 16,6% Adaptado de: - Probabilidad condicional. (s. f.). Fhybea. https://www.fhybea.com/probabilidad-condicional.html