Регрессионная модель Гретл
РЕГРЕССИОННАЯ МОДЕЛЬ [regression model] — экономико-статистическая модель, основанная на уравнении регрессии, или системе регрессионных уравнений, связывающих величины экзогенных (входных, “объясняющих”) и эндогенных (выходных) переменных
Регрессионная модель объединяет широкий класс универсальных функций, которые описывают некоторую закономерность. При этом для построения модели в основном используются измеряемые данные, а не знание свойств исследуемой закономерности. Такая модель часто неинтерпретируема, но более точна. Это объясняется либо большим числом моделей-претендентов, которые используются для построения оптимальной модели, либо большой сложностью модели. Нахождение параметров регрессионной модели называется обучением модели.
Недостатки регрессионного анализа: модели, имеющие слишком малую сложность, могут оказаться неточными, а модели, имеющие избыточную сложность, могут оказаться переобученными.
Примеры регрессионных моделей: линейные функции, алгебраические полиномы, ряды Чебышёва, нейронные сети без обратной связи.
Математическая модель предполагает участие аналитика в конструировании функции, которая описывает некоторую известную закономерность. Математическая модель является интерпретируемой — объясняемой в рамках исследуемой закономерности. При построении математической модели сначала создаётся параметрическое семейство функций, затем с помощью измеряемых данных выполняется идентификация модели — нахождение её параметров. Известная функциональная зависимость объясняющей переменной и переменной отклика — основное отличие математического моделирования от регрессионного анализа. Недостаток математического моделирования состоит в том, что измеряемые данные используются для верификации, но не для построения модели, вследствие чего можно получить неадекватную модель. Также затруднительно получить модель сложного явления, в котором взаимосвязано большое число различных факторов.
Число степеней свободы df
(n-k) - это число степеней свободы (df), т.е. число независимых наблюдений, используемых при расчёте оценки дисперсии ошибки. Здесь n - число наблюдений, а k- число параметров регрессионной модели (3). Для определения положения плоскости в пространстве (т.е. вычисления параметров двухфакторной регрессионной функции) нужны минимум три наблюдения (k=3). Эти наблюдения не независимые, т.к. использовались для оценки параметров регрессии в числителе формулы.
Прогнозирование
Интервальный прогноз строится на основе точечного прогноза.
где S – стандартная ошибка; n - p – число степеней свободы; р – количество коэффициентов тренда; - критическая точка распределения Стьюдента.
Доверительный интервал прогноза будет иметь следующие границы:
упрогн(n+k) + U(k) (верхняя граница);
упрогн(n+k) - U(k) (нижняя граница).
Точечный прогноз для временных моделей получается подстановкой в модель соответствующего фактора времени, т.е. t = n+1, n+2, …, n+k, где k – период упреждения.
Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции, имеет малую вероятность.
Создание регрессионной модели в Exel
Классификация моделей
Линейная регрессия (англ. Linear regression) — используемая в статистике регрессионная модель зависимости одной (объясняемой, зависимой) переменной y от другой или нескольких других переменных (факторов, регрессоров, независимых переменных) x с линейной функцией зависимости.
Нелинейная регрессия — частный случай регрессионного анализа, в котором рассматриваемая регрессионная модель есть функция, зависящая от параметров и от одной или нескольких свободных переменных. Зависимость от параметров предполагается нелинейной.
Предпосылки 1МНК(Гауса -Маркова)
Случайные отклонения ui и uj являются независимыми друг от друга для i j. Выполнимость данной предпосылки предполагает, что отсутствует систематическая связь между любыми случайными отклонениями. Другими словами, величина и определенный знак любого случайного отклонения не должны быть причинами величины и знака любого другого отклонения.
Поэтому, если данное условие выполняется, то говорят об отсутствии автокорреляции.
Случайное отклонение должно быть независимо от объясняющих переменных.
Обычно это условие выполняется автоматически, если объясняющие переменные не являются случайными в данной модели.
Проверка качества модели
F-тестом или критерием Фишера (F-критерием, φ*-критерием) — называют любой статистический критерий, тестовая статистика которого при выполнении нулевой гипотезы имеет распределение Фишера (F-распределение).
Сравниваем Fр и Fкр. Если Fр >Fкр то принимаем гипотезу H1: модель существует, если Fр<Fкр то данная модель не может существовать.
Коэфициент детерминации - оценивает какой % разброса описывает регерссионная модель
t-КРИТЕРИй – это нормированное значение соответствующего параметра, т.е. выборочный аi на единицу его среднеквадратического отклонения.