Електронні хвилі

Радіохвилі

Її діапазон довжини хвилі від 10^−5 до 10^10 метра.

Відкрил Генріх Герц в 1880-ті

Джерелом може бути будь-яке нагріте тіло. Також радіохвилі можуть генеруватися деякими природними явищами (блискавка) або космічними об'єктами (нейтронні зірки).

Для прийому радіохвиль використовуються приймальна антени.

Використовуються радіохвилі не лише для власне радіо, але й для локації, дослідження космічних об'єктів, дослідження середовища, в якому вони поширюються, і в радіометеорології.

Інфрачервоні хвилі

За визначенням Міжнародної комісії з освітленості за довжиною хвилі інфрачервоне випромінювання підрозділяється на три діапазони: IR-A — від 700 до 1400 нм, IR-B — від 1400 до 3000 нм, IR-C — від 3000 нм до 1 мм.

Інфрачервоне випромінювання відкрив Вільям Гершель у 1800 році

До джерел ІЧ випромінювання відноситься Сонце, інфрачервоні лампи, інфрачервоні сауни, інфрачервоні обігрівачі.

Інфрочервоні хвилі використовуються в різної техніки

Існують теплові, фотоелектричні та фотохімічні приймачі інфрачервоного випромінювання.

Видимий спектор

Довжинами хвиль від 380 (фіолетовий колір) до 750 (червоний колір) нм.

Перші пояснення спектра видимого випромінювання дали Ісаак Ньютон в книзі «Оптика» і Йоганн Гете у роботі «Теорія Кольорів»(в 16 ст.), проте ще до них Роджер Бекон спостерігав оптичний спектр в склянці з водою.

Основне джерело видимого світла в космосі - зірки, поверхня яких нагріта до кількох тисяч градусів і тому випромінює світло. На Землі застосовуються також нетеплові джерела світла, наприклад, флюоресцентні лампи та напівпровідникові світлодіоди.

Приймачами видимого світла служать сітківка ока, фотоплівка, що застосовуються у цифрових фотоапаратах напівпровідникові кристали (ПЗС-матриці), фотоелементи та фотоелектронні помножувачі.

Видимий спектр використовують наші очі

Ультрафіолетові хвилі

довгі ультрафіолетові хвилі від 315 до 400 нм;
середні ультрафіолетові хвилі від 280 до 315 нм;
короткі ультрафіолетові хвилі від 10 до 280 нм.

Відкрито 1801 року німецьким вченим Йоганном Ріттером і англійським вченим Вільямом Волластоном за фотохімічним впливом випромінення на хлористе срібло (AgCl).

Джерелами ультрафіолетового випромінення, є: Сонце, зірки, туманності й інші космічні об'єкти, та наземні джерела — це блискавки і вогні святого Ельма.

Застосовуються фотоелектричні приймачі, що використовують здатність випромінення викликати іонізацію і фотоефект: фотодіоди, іонізаційні камери, лічильники фотонів, фотопомножувачі та інше.

Ультрафіолетове випромінення застосовується у криміналістиці для встановлення тотожності барвників, справжності документів тощо. У мистецтвознавстві УФ, дозволяє знайти на картинах невидимі оком сліди відновлень.

Рентгенівські хвилі

Довжини хвиль від 10 нм до 0.01 нм

8 листопада 1895 року професор фізики Вільгельм Рентген випадковим чином відкрив промені невідомого походження, які він назвав X-променями і які згодом були названі його іменем.

Рентгенівське випромінювання виникає від різкого гальмування руху швидких електронів у речовині, при енергетичних переходах внутрішніх електронів атома. Воно використовується у науці, техніці, медицині. Рентгенівське випромінювання змінює деякі характеристики гірських порід, наприклад, підвищує їх електропровідність.

Вони проникають практично через все, так що, майже все є їх приймачами

Рентгенівське випромінювання використовуються для флюорографії, рентгенофлюоресцентного аналізу і в кристалографії для визначення атомної структури кристалів. Методи дослідження речовини за допомогою рентгенівських променів об'єднує термін рентгенівська спектроскопія.

ɣ-випромінювання

Довжина хвилі менша за 1 ангстрем.

Y-випромінювання було відкрито французьким фізиком Полем Вілларом у 1900 році при дослідженні випромінювання радію.

Гамма-квант випромінюється внаслідок переходу ядра зі збудженого стану в основний. При цьому не змінюються ні атомний номер, ні масове число ядра. Гамма-кванти можуть з'являтися також в інших, складніших ядерних реакціях. Іншим джерелом гамма-променів є гальмівне випромінювання високоенергетичних заряджених частинок.

енергія гамма-кванта поглинається електроном оболонки атома, і електрон, здійснюючи роботу виходу, залишає атом (який стає позитивно іонізованим).

Області застосування гамма-випромінювання: Гамма-дефектоскопія - контроль виробів просвічуванням -променями. Харчова промисловість: консервування харчових продуктів (гама-стерилізація збільшення терміну зберігання). Медицина: стерилізація медичних матеріалів та обладнання; променева терапія; радіохірургія.