Леонард Эйлер
Жизнь
Дружественные числа
Вклад Леонарда Эйлера в в решение вопроса о дружественных числах. Со времен Пифагора (VI в. до н. э.) стоял вопрос о совершенных и дружественных числах. Натуральное число a называется совершенным, если сумма всех его собственных делителей, т.е. делителей, отличных от a, равняется a (таким об-
разом, сумма всех делителей a равняется 2a). Например, число 6 является совершенным, так как собственные делители 6 есть 1, 2, 3 и 1+2+3 = 6 До Эйлера была теорема Евклида: если
a = (2p − 1)2p−1 и число 2p − 1 является простым, то a – совершенное число. Например, при p = 2 получаем: 2p−1 = 22−1 = 3, a = 6; при p = 3 получаем: 2p − 1 = 23 − 1 = 7, a = 28 Простые
числа M = 2p p− 1 называются простыми Мерсенна. Эйлер доказал, что если число a является четным совершенным числом, тооно имеет указанный выше вид. Таким образом, для того, чтобы четное число a было совершенным, необходимо и достаточно, чтобы оно имело следующий вид:a =M 2p−1p, Mp = 2p − 1 – простое число. Эйлер высказал гипотезу, что нет нечетных совершенных чисел
(гипотеза не доказана, 2007 г.).
Натуральные числа A и B называются дружественными, если сумма собственных делителей A равняется B и наоборот, сумма собственных делителей B равна A. До Эйлера были известны
две пары дружественных чисел: пара Пифагора (220, 284) и пара
Ферма–Декарта (17296, 18416). Эйлер нашел 59 новых пар, в частности, пары нечетных дружественных чисел; например, такой па-
рой будет (32 · 7 · 13 · 5 · 17, 32 · 7 · 13 · 107).
Учёные, занимающиеся вопросом проблемой дружественных чисел
Пифагор
Первооткрыватель дружественных чисел, первой, наименьшей из возможных и единственно известной на протяжении более чем 15 последующих веков пар.
Марокканский учёный ибн аль-Банна
Открыл вторую пару: 17296 и 18416 около 1300 года.
Пьер Ферма
Не зная об открытии ибн аль-Банна, через 300 лет в 1636 году открывает эту же пару
Ране Декарт
В 1638 году нашёл третью пару
Леонард Эйлер
Излагает 5 различных методов выявления дружественных чисел и преподносит их ровно 59 пар.
Наш великий соотечественник П.Л. Чебышев
Ещё одна пара дружественных чисел
Шестнадцатилетний итальянец Николо Паганини (тезка знаменитого скрипача)
Ещё одна пара дружественных чисел
Вопросы, которые ждут своего решения в 21 веке
Существует ли чётно-нечётная пара дружественных чисел?
Предположение о существовании взаимно простых дружественных чисел
Научная деятельность
Седьмая часть научных работ Эйлера посвящена теории чисел (из 900 названий статей Эйлера и его сына Иоганна Альбрехта 120 посвящены теории чисел).
Внимание Эйлера к теории чисел привлек Гольдбах (письмо Гольдбаха к Эйлеру от 1 декабря 1729 г.), и первой работой
была работа о теореме Ферма, касающаяся представимости простых чисел суммою двух квадратов целых чисел. Несмотря на разницу в возрасте в 17 лет, Гольдбах и Эйлер дружили, вели
активную переписку, где ставились и решались проблемы теории чисел, вплоть до кончины Гольдбаха в 1764 г.
Самым значительным изданным трудом Эйлера по теории чисел являются его “Арифметические сочинения”. Это двухтомная монография, изданная в 1849 г. в Петербурге под редакцией Фуса, Буняковского, Чебышева. К изданию трудов Эйлера привлек Чебышева в 1847 г. Буняковский. После этого издания Чебышев занялся теорией чисел и написал две свои знаменитые статьи
по теории чисел.
Уже в наше время (1997 г.) вышла книга “Неопубликованные материалы Л. Эйлера по теории чисел” под редакцией Н.И. Невской, где содержатся заметки из записных книжек Эйлера, касающиеся вопросов теории чисел.
Во времена Эйлера еще не было науки “теория чисел”. Да и сама математика, как строгая наука, начинала только-только строиться. Как самостоятельная наука теория чисел сформировалась значительно позднее, после работ Гаусса, после издания его классического труда “Арифметические исследования” (1801 г.).
Но в то же время период деятельности Эйлера был тем периодом, когда закладывался фундамент теории чисел, когда находились (создавались) понятия, ставились и решались задачи, которые впоследствии составили здание теории чисел.