/sin^2θ
/sin^2θ

Trig Functions

SINθ

y=sinθ

Domain: All Real #s

Range: [-1,1]

Period: 2π

Even

y=Sin^-1θ

D: [-1,1]

R: [(-π/2)/(π/2)]

CSCθ

y=cscθ

D: All Reals except nπ

R: (- ∞, -1]U[1, ∞ )

Per: 2π

Odd

y=csc^-1θ

D: (- ∞, -1]U[1, ∞ )

R: [(-π/2)/(π/2)], y≠0

COSθ

y=cosθ

D: All Real #s

R: [-1,1]

Per: 2π

Even

y=cos^-1θ

D: [-1,1]

R: [0,π]

SECθ

y=secθ

D: All real except (π/2)+(nπ)

R: (−∞,−1]∪[1,∞)

Per: 2π

Even

y=sec^-1θ

D: (−∞ −, 1]∪[1,∞)

R: [0,π], y≠(π/2)

TANθ

y=tanθ

D: All Reals except (π/2)+nπ

R: All Real #s

Per: π

Odd

y=tan^-1θ

D: (−∞ ∞,)

R:( (-π/2)/(π/2))

COTθ

y=cotθ

D: All real except nπ

R: All Real #s

Per: π

Odd

y=cot^-1θ

D: (−∞,∞)

R:(0,π)

Fundamental Identities

sin^2θ+cos^2θ= 1

1+cot^2θ=csc^2θ

tan^2θ+1=sec^2θ