カテゴリー 全て - interest - domain - trigonometry - exponents

によって Omar Manning 3年前.

104

Math 104

The text discusses various mathematical concepts and their applications. It begins with an exploration of the laws of exponents, detailing how to express powers as factors and solve equations involving logarithms and exponents.

Math 104

Math 104

Chapter 7

Interest
Compound Interest

A=2,000(1+(0.015/4)^4*1

A=$2030.17

A=P(1+r/n)^nt

n=times it compound

Simple Interest

I=2,000*.015*1/4

I=$2038.17

I=Prt

t=time

r=rate

P=principle

Log & Expon Equations
log20(x+9)+log20(x+1)=1

X=-1,1

Final answer: x=1

4log6 x=log6 16

x=2,-2

Final Answer: x=2

"x cant be negative"

Laws Of Exponents
In X^2/(X-2)^4

InX^2-In(x-2)^4

"Express all powers as factors"

2Inx-4In(x-2)

Loga(x^2 √x+1), x>0

2logax+loga(x+1)^1/2

"Express All powers as factors"

All powers= Exponents

2logax+1/2loga(x+1)

Exponential Functions Property
Domain & Range

g(x)=log(5+x/5-x)

Interval Notation: (-5,5)

f(x)=log3(x+2)

Domain: {x|X>-2}

Interval Notation: (-2,∞)

Range

(∞,∞)

Domain

(0,∞)

Cant have zero so its not included

Log property

y=logx ↔ x=a^y

log3 81 ↔ y=log3 81

y=4

e^u=25 ↔ u=loge25

1.6^3= ↔ 3=log1.6

y=log7x ↔ x=7^y

a^u=a^v ↔ u=v

Trigonometr

Law Of Sines
SinA/a = SinB/b = SinC/c
Pythagorean Idebtites
1+cot^2Θ=csc^2Θ
1+tan^2Θ=sec^2Θ
sin^2Θ+cos^2Θ=1
Six Trig Functions
CotΘ

1/tanΘ

cosΘ/sinΘ

Adjacent/Opposite

CscΘ

1/sinΘ

Hypotenuse/Opposite

SecΘ

1/cosΘ

Hypotenuse/Adjacent

TanΘ

1/cotΘ

SinΘ/cosΘ

Opposite/Adjacent

CosΘ

1/secΘ

Adjacent/ Hypotenuse

SinΘ

1/cscΘ

Opposite/Hypotenuse

Law of Cosine
c^2=a^2+b^2ab cosC
b^2=a^2+c^2-2ac cosB
a^2=b^2+c^2-2bc cosA

Chapter8

Binomial Theorem
Expand

(x+3)^2=(x+3)(x+3)

Nonlinear Equations
Use Substitution or Elimination
Determinants
Cramer's Rules

3x3 Determinants

2x2 Determinats

Matrices
Row Echelon Form
Augmented Matrix
Systems Of Equations
Consistent, Inconsistent, And Dependent