Math 104
Chapter8
Systems Of Equations
Consistent, Inconsistent, And Dependent
Matrices
Augmented Matrix
Row Echelon Form
Determinants
Cramer's Rules
2x2 Determinats
3x3 Determinants
Nonlinear Equations
Use Substitution or Elimination
Binomial Theorem
Expand
(x+3)^2=(x+3)(x+3)
Trigonometr
Law of Cosine
a^2=b^2+c^2-2bc cosA
b^2=a^2+c^2-2ac cosB
c^2=a^2+b^2ab cosC
Six Trig Functions
SinΘ
Opposite/Hypotenuse
1/cscΘ
CosΘ
Adjacent/ Hypotenuse
1/secΘ
TanΘ
Opposite/Adjacent
SinΘ/cosΘ
1/cotΘ
SecΘ
Hypotenuse/Adjacent
1/cosΘ
CscΘ
Hypotenuse/Opposite
1/sinΘ
CotΘ
Adjacent/Opposite
cosΘ/sinΘ
1/tanΘ
Pythagorean Idebtites
sin^2Θ+cos^2Θ=1
1+tan^2Θ=sec^2Θ
1+cot^2Θ=csc^2Θ
Law Of Sines
SinA/a = SinB/b = SinC/c
Chapter 7
Exponential Functions Property
a^u=a^v ↔ u=v
Log property
y=logx ↔ x=a^y
y=log7x ↔ x=7^y
1.6^3= ↔ 3=log1.6
e^u=25 ↔ u=loge25
log3 81 ↔ y=log3 81
y=4
Domain & Range
Domain
(0,∞)
Cant have zero so its not included
Range
(∞,∞)
f(x)=log3(x+2)
Domain: {x|X>-2}
Interval Notation: (-2,∞)
g(x)=log(5+x/5-x)
Interval Notation: (-5,5)
Laws Of Exponents
Loga(x^2 √x+1), x>0
2logax+loga(x+1)^1/2
2logax+1/2loga(x+1)
"Express All powers as factors"
All powers= Exponents
In X^2/(X-2)^4
InX^2-In(x-2)^4
2Inx-4In(x-2)
"Express all powers as factors"
All powers= Exponents
Log & Expon Equations
4log6 x=log6 16
x=2,-2
"x cant be negative"
Final Answer: x=2
log20(x+9)+log20(x+1)=1
X=-1,1
"x cant be negative"
Final answer: x=1
Interest
Simple Interest
I=Prt
P=principle
r=rate
t=time
I=2,000*.015*1/4
I=$2038.17
Compound Interest
A=P(1+r/n)^nt
P=principle
r=rate
n=times it compound
t=time
A=2,000(1+(0.015/4)^4*1
A=$2030.17