Operations with Functions

Given F(x), G(x)

F(x)+G(x)=(F+G)(X)

F(x)=2x+1 G(x)=x^2+2x+1

when x=1

F(1)=2(1)+1=3

F(1)+G(1)=3+2=5

G(1)=1^2+2(1)-1=2

F(x)-G(x)=(F-G)(X)

F(x)=2x-5 G(x)=2-x

(2x-5)-(2-x)

3x-7=(f-g)(x)

F(x)*G(x)=(F*G)(x)

F(x)=2x-5 G(x)=2-x

(2x-5)(2-x)

4x-2x^2-10+5x

-2x^2+9x-10

F(x)/G(x)=(F/G)(x) G(x) not = 0

F(x)=2x-5 G(x)=2-x

(2x-5)/(2-x)

Domain all real #'s except 2

F(g(x))

F(x)=x^2+1 G(x)=√x

(√x)^2+1=x+1

G(f(x))

√(x^2 +1)