Conjunto de numeros numericos

a

RACIONALES

Caracteristicas

Son las que se representa con la letra Q, son expresados como un cociente entre dos números enteros, expresados como números decimales y pueden ser positivos, negativos.

Ejemplos

0,3=3/10

0,25=25/100=1/4

-0,75=-75/100=-3/4

Notación de conjuntos

Las expresiones decimales de los números racionales son finitas o periódicas. Por ejemplo 65 20 = 3.25 \frac{65}{20}=3.25 2065=3.25 es un racional con expresión decimal finita.

REALES

Caracteristicas

Existe una relación entre el conjunto de los números reales y la recta numérica, que afirma lo siguiente: para cada número real existe uno y solo un punto que lo representa en la recta numérica.

Ejemplo

a*b*c=a*b*c=a*(b*c)

2*3*6=2*3*6=2*3*6=36

Add your idea

Notación de conjuntos

se expresan con fracciones decimales que tienen una secuencia infinita de dígitos a la derecha de la coma decimal, como por ejemplo 324,8232. Frecuentemente también se subrepresentan con tres puntos consecutivos al final (324,823211247…)

IRRACIONALES

Caracteristicas

al elevar un número entero a una potencia entera se obtiene otro número entero, sin embargo, al sacar ciertas raíces el resultado no es entero. Para incluir parte de esos resultados son necesarios los números irracionales

Ejemplo

Sustituimos x = 2 en la ecuación inicial:

x

1

1

=

0

2

1

1

=

0

1

1

=

0

1

1

=

0

0

=

0

Notación de conjuntos

La representación gráfica de los números irracionales se la hace con la letras mayúsculas así: R - Q. Se la utiliza de esta manera para diferenciarla de los números imaginarios, cuya representación es la i minúscula.

ENTEROS

Notación de conjuntos

{Z}=\{..., -4, -3, -2, -1, 0, +1, +2, +3,\,... \}

Caracteristicas

Los números enteros cubren los números naturales, incluidos el cero y los números negativos (el resultado de restar un número natural de otro).

Es decir, los números enteros son aquellos números positivos y negativos, incluido el cero, que no tienen parte decimal dentro de su estructura (3,28, por ejemplo, no es un número entero).

El término entero se deriva del número latino y se representa con la letra Z.

Operaciones basicas (ejemplos)

- 4 X ( - 7 + 9 ) + 8

= 4 X ( + 2 ) + 8

= - 8 + 8

= 0

NATURALES

Operaciones basicas (ejemplos)

ℕ = {0, 1, 2, 3, 4, …}

Maximo como un divisor

(MCD) de un conjunto de números es el factor más grande que comparten todos los números. Por ejemplo, 12, 20 y 24 tienen dos factores comunes: 2 y 4. El mayor es 4, así que decimos que el MCD de 12, 20 y 24 es 4.

Caracteristicas

El conjunto de los números naturales se denota por N = {1, 2, 3, 4, 5, …}. El primer número natural es el uno y la progresión sigue de forma aritmética sumando uno a cada nuevo valor. Por esta característica los números naturales son ideales para contar y enumerar.