RULES OF DIFFERENTIATION

r

PECAHAN

1. Constant Function/Rule

if y = f(x)=c

where C is any constant

dy/dx=f'(x)=0

Example : 1. if f(x)=4

f'(x)=0

if f(x)=-7

f'(x)=0

2. Constant-Multiple Rule

if f(x)=mx

Where m is any constant

f'(x)=dy/dx=m

f'(x)=5

f'(x)=-3

5. Chain Rule

If f(x)=(ax-+b)^n

f'(x)=n(ax-+b)^n-1(ax-+b)'

7. Quotient/ Rational Rule

If y=h(x)/g(x)

let h(x)=u, g(x)=v

y'=dy/dx=vu'-uv'/v^2

SYED MUHAMMAD ZUBAIR BIN SYED SHAHAZAM (052947) MSD 10503 DII

3. Power Rule

If y=f(x)=x^n

y'=f'(x)=nx^n-1

Example : f(x)=5x^3

f'(x)=5(3)x^3-1

f(x)=15^2

f(x)=2x^4

f'(x)=2(4)x^4-1

f(x)=8x^3

4. Sum Rule

If f(x)=h(x)+-g(x)

f'(x)=h'(x)+-g'(x)

Example : f(x)=x^3+3x

f'(x)=3x^2+3

6. Product Rule

If y=h(x)×g(x)

let h(x)=u, g(x)=v

y'=uv'+vu'

=u dv/dx + v du/dx