TRATAMIENTOS
TERMOQUÍMICOS

Los tratamientos termoquímicos son tratamientos térmicos en los que, además de los cambios
en la estructura del acero, también se producen cambios en la composición química de la capa superficial,
añadiendo diferentes productos químicos hasta una profundidad determinada

CEMENTACIÓN

La cementación es un tratamiento termoquímico que consiste en carburar una capa superficial
de una pieza de acero, rodeándola de un producto carburante y calentándola a una temperatura
adecuada mediante difusión, modificando su composición, impregnando la superficie y sometiéndola a
continuación a un tratamiento térmico, un temple y un revenido, quedando la pieza con buena tenaci
dad
en el núcleo y con mucha dureza superficial.

El objetivo de la cementación es que en el templado del acero proporciona dureza a la pieza,
pero también fragilidad. Por el contrario, si no se templa el material no tendrá la dureza suficiente y se
desgastará. Para conservar las mejores cualidades de los dos casos se utiliza la cementación, que endurece
la superficie de la pieza sin modificación del núcleo, dando lugar así a una pieza formada por dos
materiales, la del núcleo de acero con bajo índice de carbono, tenaz y resistente a la fatiga, y la parte de la
superficie, de acero con mayor concentración de carbono, más dura, resistente al desgaste y a las
deformaciones, siendo todo ello una única pieza compacta.

La cementación encuentra aplicación en todas aquellas piezas que tengan que poseer gran
resistencia al choque y tenacidad junto con una gran resistencia al desgaste, como es el caso de los
piñones, levas, ejes, etc.

Podemos diferenciar tres tipos de materiales cementantes:

Sólidos.

Para la cementación en medio sólido, las piezas limpias y libres de óxidos se colocan en
la mezcla de cementación, dentro de cajas de chapas de acero soldadas y selladas.

Estas cajas se cargan
luego al horno de cementación, y se mantienen ahí durante varias horas a una temperatura entre 900 ºC y
950 ºC aproximadamente, hasta obtener la profundidad de la capa de difusión deseada. Como mezcla de

cementación se puede utilizar la de 70 % a 80 % de carbón vegetal finalmente pulverizado, con un 20 % a

30 % de alguno de los siguientes carbonatos: carbonato de bario (BaCO3), carbonato de sodio (Na2CO3) o

carbonato de potasio (K2CO3) que actúan como catalizador y que contribuyen al desprendimiento del

carbono en estado elemental, necesario para la cementación

Los equipos utilizados para la cementación sólida son cajas donde se cementa con mezcla
cementante que rodea a la pieza en un recipiente cerrado, el cual se calienta a la temperatura adecuada
durante el tiempo requerido y luego se enfría con lentitud.

• Líquidos.

Para la cementación en medio líquido, las piezas se introducen en un baño de sales
fundidas a 950 °C aproximadamente, constituidas por una sal base generalmente cloruro o carbonato de
sodio, con adición de una sal aportadora de carbono, cianuro de sodio o de potasio y de una sal activante,

cloruro de bario, mezclados en porcentajes adecuados, según los resultados que se deseen obtener.

La presencia de nitrógeno en los cianuros provoca también la formación de productos de reacción (nitruros)
de elevada dureza pero limitados a una finísima capa exterior.

Diferenciamos el baño o la cuba 1 y 5, la pieza 2, el cementante 3 y bases de sales 4.

Según sean los requisitos de dureza y resistencia mecánica existen varios tipos de aceros
adecuados para recibir el tratamiento de cementación y posterior tratamiento térmico. Algunos ejemplos
de aceros aptos para la cementación son:

Aceros para cementación al carbono. La cementación ser realiza entre 900 ºC y 950 ºC, el
primer temple se realiza entre 875 ºC y 925 ºC en agua o aceite, el segundo temple se realiza entre 925 ºC
y 775 ºC en agua, y el revenido a una temperatura máxima de 200 ºC. Se utiliza para piezas poco cargadas

y de espesor reducido, de poca responsabilidad y escasa tenacidad en el núcleo.

Aceros para cementación al cromo-níquel (Cr-Ni) de 125kgf/mm2
. Tiene una composición de
cromo de 1 % y de níquel un 4,15 %. La cementación se realiza entre 850 ºC y 900 ºC, el primer temple

entre 825 ºC y 900 ºC en aceite, el segundo temple se realiza entre 725 ºC y 800 ºC, y el revenido a una

temperatura máxima de 200 ºC. Se utiliza para piezas de gran resistencia en el núcleo y buena tenacidad.

Elementos de máquinas y motores, engranajes, levas, etc.

Aceros para cementación al cromo-molibdeno (Cr-Mo) de 95 kgf/mm2
. Tiene una
composición de cromo de 1,15 % y de molibdeno un 0,20 %. La cementación se realiza entre 875 ºC y

950 ºC, el primer temple se realiza entre 875 ºC y 900 ºC en aceite, el segundo temple se realiza entre 775

ºC y 825 ºC en aceite, y el revenido a una temperatura máxima de 200 ºC. Se utiliza para piezas de

automóviles y maquinaria de gran dureza superficial y núcleo resistente. Piezas que sufran gran desgaste

y transmitan esfuerzos elevados, engranajes, levas, etc.

Gaseosos.

La cementación gaseosa necesita de un equipo especial más complicado y se aplica a
la producción en masa de piezas cementadas. Esta cementación tiene ventajas considerables con respecto
a la cementación en medio sólido y líquido, el proceso es dos o tres veces más rápido, la tecnología es

menos perjudicial a la salud, y las propiedades del núcleo sin cementar resultan mejores debido al menor

crecimiento del grano.

El proceso se realiza en hornos especiales, en cuyo interior se inyecta como gas
cementante algún hidrocarburo saturado tales como metano, butano, propano y otros. Al calentar a unos
900 ºC y 1000 ºC aproximadamente, se desprende el carbono elemental que cementa el acero. Por

ejemplo al calentar metano.

Los equipos utilizados para la cementación gaseosa son más eficientes y complejos que los
anteriores, los ciclos son más controlados, el calentamiento más uniforme, es más limpio y requiere de
menos espacio. La pieza se calienta en contacto con CO y/o un hidrocarburo, por ejemplo alguna mezcla

de gases que contenga butano, propano o metano, que fácilmente se descompone a la temperatura de

cementación.

NITRURACIÓN

La nitruración es un tratamiento térmico empleado para el endurecimiento superficial de ciertas
piezas, principalmente aceros. Es especialmente recomendable para aceros aleados con cromo, vanadio,
aluminio, wolframio y molibdeno, ya que forman nitruros estables a la temperatura de tratamiento. Son
estos nitruros los que proporcionan la dureza buscada.

Durante la nitruración, la pieza sometida ve aumentada su dureza superficial mediante el aporte
de nitrógeno a la misma en una atmósfera nitrurante, principalmente compuesta de vapores de amoníaco
descompuesto en nitrógeno e hidrógeno.

• Nitruración gaseosa.

Nitruración gaseosa. La nitruración gaseosa se realiza en hornos de atmósfera controlada en los
que la pieza se lleva a temperaturas entre 500 ºC y 575 ºC en presencia de amoníaco disociado. Este
proceso se basa en la afinidad que tiene los elementos de aleación del acero por el nitrógeno procedente

de la disociación del amoníaco.

• Nitruración líquida.

Nitruración en baño de sales. La nitruración en baño de sales se realiza a la misma temperatura
que la nitruración gaseosa, entre 500 ºC y 575 ºC. Para ello se introduce la pieza en un baño de sales
fundidas compuesto por cianuros (CN-) y cianatos (CON-) en estado fundido. Durante este tratamiento, el

material absorbe C y N del baño. Dadas las bajas temperaturas a las que se opera, la carburación es muy

pequeña, dando paso a la nitruración. Así, se forma una capa cuya composición química es de un 25 % de

carburos y de un 75 % de nitruros de hierro.

Aceros para nitruración

Acero para nitruración al Cr-Mo-V de alta resistencia. La composición extra de este acero es
la siguiente: 0,32 % C, 3,25% Cr, 0,40% Mo y 0,22%V. Una vez tratado alcanza una resistencia mecánica
de 120 kg/mm2. La capa nitrurada se adhiere muy bien al núcleo sin temor a descascarillamiento. Se

utiliza para construir piezas de gran resistencia y elevada dureza superficial para resistir el desgaste.

Acero para nitruración al Cr-Mo-V de resistencia media. La composición extra de este acero
es 0,25% C, 3,25%Cr, 0,40% Mo y 0,25% V. Tiene características y aplicaciones parecidos al anterior,
solamente que su resistencia mecánica es de 100kg/mm2.

Acero para nitruración al Cr-Al-Mo de alta dureza. La composición extra de este acero es
0,40% C, 1,50% Cr, 0,20% Mo y 1% Al. La capa nitrurada de este acero puede descascarillarse y es de
gran fragilidad. Se utiliza para piezas que soporten una resistencia media y la mayor dureza superficial

posible. Este tratamiento también es aplicable a algunos aceros inoxidables, aceros al cromo-níquel y

ciertas fundiciones al aluminio o al cromo.

• Nitruración sólida.

Nitruración sólida. En la nitruración sólida las piezas se colocan cubiertas por una pasta se
sustancia nitrurante que se eleva a una temperatura entre 520 ºC y 570 ºC durante 12 horas.

• Nitruración iónica.

Nitruración iónica o por plasma. Es un tipo de nitruración gaseosa dirigida a aumentar la
velocidad de difusión del nitrógeno y reducir el tiempo de tratamiento. Se realiza dentro de un reactor
donde se ha hecho vacío antes de introducir los gases de nitruración. E

CIANURACIÓN

La cianuración se puede considerar como un tratamiento intermedio entre la cementación y
la nitruración, ya que el endurecimiento se consigue por la acción combinada del carbono y el nitrógeno a
una temperatura determinada.

Cuando se quiere obtener una superficie dura y resistente al desgaste, se
realiza a una temperatura por encima de la crítica del corazón de la pieza entre 750 ºC y 950 ºC
aproximadamente, se introduce la pieza en una solución que generalmente consta de cianuro de sodio con

cloruro de sodio y carbonato de sodio, el enfriamiento se hará directamente por inmersión al salir del

baño de cianuro con esto se obtiene una profundidad de superficie templada uniforme de unos 0,25 mm

en un tiempo de una hora.

Los baños de cianuro se usan generalmente en los procesos de temple de acero para impedir la
descarburación de la superficie. Sus principales ventajas son: la buena eliminación de oxidación, la
profundidad de la superficie es duradera, el contenido de carbono se reparte homogéneamente y de gran

rapidez de penetración.

Podemos realizar la cianuración de dos maneras diferentes, como son:

A la flama el calentamiento del acero se realiza de forma local, de modo que con el enfriamiento
se produzca un temple localizado en la región afectada.

Por inducción el calentamiento se realiza por corriente eléctrica, el calentamiento por resistencia
es útil para templar secciones localizadas de algunas piezas forjadas y de fundición, pero en general su
principal aplicación es para calentar partes de sección transversal uniforme

El proceso se usa para
templar superficies de piezas cilíndricas, los muñones de apoyo de los cigüeñales aplicando una corriente
de alta frecuencia a la sección de apoyo durante unos cuantos segundos y cuando se ha calentado el acero

a la profundidad deseada, se rocía agua sobre la superficie calentada a través de orificios hechos, los

bloques del inductor que rodea al apoyo

La profundidad de temple con este proceso varia
de 1,5 a 6,5 mm este método se emplea en superficies de piezas grandes por su deformación que es
mínima. Para aceros al carbono el contenido de este debe ser entre 0,35 % a 0,70 %, aunque también

puede templarse a la llama aceros contenido de carbono más alto si se tiene cuidado de impedir el

agrietamiento de la superficie.

CARBONITRURACIÓN

La carbonitruración es un procedimiento que consiste en endurecer superficialmente el acero,
en este tratamiento termoquímico se promueve el enriquecimiento superficial simultáneo con carbono y
nitrógeno, con el objetivo de obtener superficies extremadamente duras y un núcleo tenaz, sumado a otras

propiedades mecánicas como resistencia a la fatiga, resistencia al desgaste y resistencia a la torsión. Una

ventaja significativa es que presenta muy poca deformación debido a que el nitrógeno absorbido en el

proceso disminuye la velocidad crítica de temple del acero.

Dicho tratamiento se realiza en las mismas condiciones que la cementación ya sea en baño de
sales de una composición determinada o en atmósfera gaseosa con adición de nitrógeno por medio de la
disociación de amoniaco. Por esta razón la temperatura de la carbonitruración se sitúa entre las

temperaturas de estos dos procesos.

Por esta razón la temperatura de la carbonitruración se sitúa entre las
temperaturas de estos dos procesos. La oferta de nitrógeno, que se difundirá en el acero, dependerá de
la composición del baño y también de su temperatura. Por lo contrario, el aumento de nitrógeno se reduce

a medida que aumenta la temperatura.

Diremos que el tratamiento de carbonitruración está subdividido
en:
• Carbonitruración por encima de A1 (750ºC a 850ºC).

• Carbonitruración por debajo de A1 (700ºC a 750ºC).

SULFINIZACIÓN

La sulfinización es un tratamiento termoquímico en el cual se introduce superficialmente azufre
al acero. El objetivo no es mejorar las propiedades mecánicas sino mejorar su comportamiento frente al
mecanizado. Se realiza en piezas ya terminadas.

Consiste en elevar la temperatura de la pieza a 575°C
aproximadamente en un baño de sales que ceden carbono, nitrógeno y azufre (estos dos últimos en menor
cantidad), en aleaciones férreas y de cobre.

Se utiliza en aceros de bajo carbono donde la viruta no se corta sino que se deforma y es
arrastrada acumulándose frente al ataque. La incorporación superficial del azufre genera sulfuro de hierro
(S2Fe) como inclusión no metálica (impurezas), y se aloja en los bordes de grano lo que fragiliza al metal,

lo cual hace que disminuya el punto de fusión.

Después de la sulfinización las dimensiones de las piezas
aumentan ligeramente, aumentando su resistencia al desgaste, favoreciendo la lubricación y evitando el
agarrotamiento.

Máquinas para el lavado, desengrase y tratamiento de superficies de todo tipo de piezas
(fosfatado, pasivado, decapado, secado, etc.).