realizată de Szilvia Eszes 9 ani în urmă
255
Mai multe ca aceasta
Inverzfüggvény
Sorozatok
Függvényvizsgálatok, egyenletek, egyenlőtlenségek mo.
Fizikai alkalmazások
Integrálszámítás
Az integrálás és a deriválás a fizikusok és a mérnökök fontos eszköze. Az analízis megalkotói az integrált úgy képzelték el, mint olyan közelítő téglalapok területösszege, amelyek alapja infinitezimális. Az integrál egyik első és legelterjedtebb formális definíciója Bernhard Riemanntól származik. Ez a definíció egy közelítés (Riemann-összegek) határértékeként definiálja az integrál értékét. A 19. század elején az integrálfogalom különféle általánosításai jelentek meg, amelyek az integrálható függvények halmazát kiterjesztették, éppúgy, mint ahogy kiterjesztették ezen integrálható függvények lehetséges alaphalmazát.
Differenciálszámítás
A differenciálszámítás a matematikai analízis egyik legfontosabb módszere. Azt vizsgálja, hogy a (valós vagy komplex értékű) függvények hogyan változnak néhány (esetleg az összes, de legalább egy) független változó változására. Ennek jellemzésére a differenciálszámítás elsődleges fontosságú fogalma, a derivált szolgál.
Biológia, kémia, földrajz, történelem, alkalmazások
Valószínűség, statisztika