Categorii: Tot - photosynthesis - glycolysis - electron - fermentation

realizată de Nicholas Chochan 1 an în urmă

196

Unit 4 - Metabolism and Energy concept map

 Unit 4 - Metabolism and Energy concept map

Unit 4 - Metabolism and Energy concept map

Cell respiration

Anaerobic respiration
Fermentation

Ethanol Fermentation - Conversion of pyruvate to ethanol and CO2 - Common in yeast and some bacteria - Used in the production of alcoholic beverages

Lactate Fermentation - Conversion of pyruvate to lactate - Regeneration of NAD+ for glycolysis - Common in muscle cells during intense exercise

Aerobic respiration
Electron Transport Chain (ETC) - Series of protein complexes on the inner mitochondrial membrane - Electrons transferred, creating a proton gradient - Oxygen is the final electron acceptor - ATP produced through oxidative phosphorylation - Chemiosmosis and ATP synthase involved
Krebs Cycle (Citric Acid Cycle) - Further breakdown of Acetyl-CoA - Takes place in the mitochondrial matrix - Generates NADH, FADH2, and ATP
Pyruvate Oxidation - Conversion of pyruvate to Acetyl-CoA - Takes place in the mitochondrial matrix - Releases CO2 and generates NADH
Glycolysis - Breakdown of glucose into pyruvate - Occurs in the cytoplasm - Generates ATP and NADH

Photosynthesis

Light Independent/Dark Reactions (Calvin Cycle) - Occurs in Stroma of chloroplasts
Role of CO2 and O2 in Calvin Cycle - Importance of carbon dioxide fixation - Oxygen as a byproduct
Calvin Cycle Steps - Carbon fixation (RuBisCO enzyme) - Reduction of 3-phosphoglycerate to form G3P - Regeneration of RuBP - Overall production of glucose and other carbohydrates
Overview of the process - Utilizes ATP and NADPH produced in the light-dependent reactions - Carbon fixation - Reduction and regeneration phases
Light dependent - Occurs in thylakoid
Role of Photosystems in Electron Transport - Absorption of light energy and excitation of electrons - Movement of electrons through the chain - Final electron acceptor: NADP+
Photosystem I and Photosystem II - Electron transport chain between them - Formation of a proton gradient
Overview of the process - Light absorption by chlorophyll - Water splitting (photolysis) - Generation of ATP and NADPH

Biochemical pathways

Redox reactions
Redox Regulation - Maintaining cellular redox balance - Significance in metabolic regulation
Role in Energy Transfer - Electron carriers (NAD+/NADH, FAD/FADH2) - Electron transport chain in cellular respiration
Overview of Oxidation-Reduction Reactions - Role of electron transfer in energy transfer - Oxidizing agents and reducing agents
Catabolic pathways - Breaking complex molecules
Relationships with other pathways - Interplay with anabolic pathways for energy and precursors - Regulation through feedback mechanisms
Other Catabolic Processes - Fatty acid oxidation - Amino acid degradation
Krebs Cycle - Citric acid cycle reactions - Energy and product generation
Glycolysis - Overview and key steps - Energy and product generation
Anabolic pathways - Building complex molecules
Nucleic Acid Synthesis - DNA replication - RNA synthesis
Protein Synthesis - Transcription and translation processes - Role of ribosomes and tRNA
Relationships with other pathways - Integration with catabolic pathways for precursor molecules - Regulation through feedback mechanisms

Energy Transfer

Cellular Respiration and ATP Production - ATP generation in glycolysis, Krebs cycle, and electron transport chain - Role of ATP in oxidative phosphorylation.
ATP Coupling - Linking energy-releasing reactions with energy-consuming reactions - Maintaining energy balance within the cell
ATP in Metabolism - Involvement in anabolic reactions (energy input) - Involvement in catabolic reactions (energy release)
Energy Storage and Release - ATP as a short-term energy storage molecule - Hydrolysis of ATP to ADP and inorganic phosphate for energy release
Formation of ATP - Adenosine Triphosphate (ATP) structure - ATP synthesis during cellular respiration and photosynthesis

Concept of metabolism

Cellular Metabolism -Metabolic processes occurring within cells -Production of energy for cellular activities
Metabolic Diversity in Organisms -Variation in metabolic pathways among different species -Specialized adaptations for specific environments
Metabolic Homeostasis -Maintaining a balance in metabolic processes -Adaptations to varying energy needs
Regulation of Metabolism -Enzymes and their role -Feedback mechanisms
Definition of Metabolism -Sum of all chemical reactions in a living organism -Involves catabolic and anabolic pathways
Subtopic