Operations with Functions
Given F(x), G(x)
F(x)+G(x)=(F+G)(X)
F(x)=2x+1 G(x)=x^2+2x+1
when x=1
F(1)=2(1)+1=3
F(1)+G(1)=3+2=5
G(1)=1^2+2(1)-1=2
F(x)-G(x)=(F-G)(X)
F(x)=2x-5 G(x)=2-x
(2x-5)-(2-x)
3x-7=(f-g)(x)
F(x)*G(x)=(F*G)(x)
F(x)=2x-5 G(x)=2-x
(2x-5)(2-x)
4x-2x^2-10+5x
-2x^2+9x-10
F(x)/G(x)=(F/G)(x) G(x) not = 0
F(x)=2x-5 G(x)=2-x
(2x-5)/(2-x)
Domain all real #'s except 2
F(g(x))
F(x)=x^2+1 G(x)=√x
(√x)^2+1=x+1
G(f(x))
√(x^2 +1)