variables aleatorias discretas y distribuciones de probabilidad

Cualquier variable aleatoria cuyos únicos valores posibles son 0 y 1 se llama variable aleatoria de Bernoulli.

El ejemplo 2.3 describe un experimento en el cual se determinó el número de bombas en
uso en cada una de dos gasolinerías. Defina las variables aleatorias X, Y y U como
X el número total de bombas en uso en las dos gasolinerías.
Y la diferencia entre el número de bombas en uso en la gasolinería 1 y el número
en uso en la gasolinería 2.
U el máximo de los números de bombas en uso en las dos gasolinerías.
Si se realiza este experimento y s (2, 3) se obtiene entonces X((2, 3)) 2  3 5, por
lo que se dice que el valor observado de X fue x 5. Asimismo, el valor observado de Y sería y 2  3 1 y el de U sería u máx(2, 3) =
3

variable porque diferentes valores numéricos son posibles y aleatoria porque el valor observado depende de cuál
de los posibles resultados experimentales resulte. dos clases de variables las discretas y las continuas.

VARIABLE ALEATORIA: se arroja un dado y se observa el resultado de la tirada
Ω = {1,2,3,4,5 ,6}
Sucesos = cualquier subconjunto de Ω
X: Ω→ R la función identidad
Valores posibles de X = {1,2,3,4,5 ,6} = RX
Para un dado que no está cargado asignamos equiprobabilidad a los valores posibles de la variable
aleatoria X:
P(X=1) = P(X=2) = P(X=3) = P(X=4) = P(X=5) = P(X=6) = 1/6

Distribuciones de probabilidad
para variables aleatorias discretas

La función de distribución acumulativa

Sea X el número de días de ausencia por enfermedad tomados por un empleado seleccionado al azar de una gran compañía durante un año particular. Si el número máximo de días
de ausencia por enfermedad permisibles al año es de 14, los valores posibles de X son
0, 1, . . . , 14. Con F(0) 0.58, F(1) 0.72, F(2) 0.76, F(3) 0.81, F(4) 0.88 y
F(5) 0.94,
P(2  X  5) P(X 2, 3, 4 o 5) F(5)  F(1) 0.22
y
P(X 3) F(3)  F(2) = 0.05

La distribución de probabilidad o función masa de probabilidad

En palabras, para cada valor posible x de la variable aleatoria, la función masa de probabilidad especifica la probabilidad de observar dicho valor cuando se realiza el experimento. Se requieren las condiciones p(x)
0 y todas las x posibles p(x) 1 de cualquier función
masa de probabilidad.
La función masa de probabilidad de X en el ejemplo previo se dio simplemente en la
descripción del problema. A continuación se consideran varios ejemplos en los cuales varias propiedades de probabilidad son explotadas para obtener la distribución deseada.

En los ejemplos presentados hasta ahora, la función de distribución acumulativa se derivó de la función masa de probabilidad. Este proceso puede ser invertido para obtener la
función masa de probabilidad de la función de distribución acumulativa siempre que
ésta esté disponible. Por ejemplo, considérese otra vez la variable aleatoria del ejemplo 3.7
(el número de bombas en servicio en una gasolinería); los valores posibles de X son 0,
1, . . . , 6. Entonces
p(3) P(X 3)
[p(0)  p(1)  p(2)  p(3)]  [p(0)  p(1)  p(2)]
P(X  3)  P(X  2)
F(3)  F(2)
Más generalmente, la probabilidad de que X quede dentro de un intervalo especificado es
fácil de obtener a partir de la función de distribución acumulativa. Por ejemplo,
P(2  X  4) p(2)  p(3)  p(4)
[p(0)  ...  p(4)]  [p(0)  p(1)]
P(X  4)  P(X  1)
F(4)  F(1)
Obsérvese que P(2  X  4) F(4)  F(2). Esto es porque el valor 2 de X está incluido
en 2  X  4, así que no se desea restar su probabilidad. Sin embargo, P(2  X  4)
F(4)  F(2) porque X 2 no está incluido en el intervalo 2  X = 4.

Distribuciones hipergeométricas
y binomiales negativas

Las distribuciones hipergeométricas y binomiales negativas están relacionadas con la distribución binomial. En tanto que la distribución binomial es el modelo de probabilidad aproximada de muestreo sin reemplazo de una población dicotómica finita (E–F), la distribución
hipergeométrica es el modelo de probabilidad exacta del número de éxitos (E) en la muestra. La variable aleatoria binomial X es el número de éxitos cuando el número n de ensayos
es fijo, mientras que la distribución binomial surge de fijar el número de éxitos deseados y
de permitir que el número de ensayos sea aleatorio.

. Un geólogo recolectó 10 especímenes de roca basáltica y 10
especímenes de granito. Él le pide a su ayudante de laboratorio que seleccione al azar 15 de los especímenes para analizarlos.
a. ¿Cuál es la función masa de probabilidad del número
de especímenes de granito seleccionados para su análisis?
b. ¿Cuál es la probabilidad de que todos los especímenes de
uno de los dos tipos de roca sean seleccionados para su
análisis?
c. ¿Cuál es la probabilidad de que el número de especímenes de granito seleccionados para analizarlos esté dentro
de una desviación estándar de su valor medio?

Distribución de probabilidad de Poisson: Las distribuciones binomiales, hipergeométricas y binomiales negativas se derivaron partiendo de un experimento compuesto de ensayos o sorteos y aplicando las leyes de probabilidad a varios resultados del experimento. No existe un experimento simple en el cual esté
basada la distribución de Poisson, aun cuando en breve se describirá cómo puede ser obtenida mediante ciertas operaciones restrictivas.

Suponga que el número de conductores que viajan entre un
origen y destino particulares durante un periodo designado
tiene una distribución de Poisson con parámetro  20 (sugerido en el artículo “Dynamic Ride Sharing: Theory and
Practice”, J. of Transp. Engr., 1997: 308–312). ¿Cuál es la
probabilidad de que el número de conductores
a. sea cuando mucho de 10?
b. sea de más de 20?
c. sea de entre 10 y 20, inclusive? ¿Sea estrictamente de entre 10 y 20?
d. esté dentro de dos desviaciones estándar del valor medio?

EJERCICIO COMPLEMENTARIO:. Un amigo recientemente planeó un viaje de campamento.
Tenía dos linternas, una que requería una sola batería de 6 V
y otra que utilizaba dos baterías de tamaño D. Antes había
empacado dos baterías de 6 V y cuatro tamaño D en su
“camper”. Suponga que la probabilidad de que cualquier batería particular funcione es p y que las baterías funcionan o
fallan independientemente una de otra. Nuestro amigo desea
llevar sólo una linterna. ¿Con qué valores de p deberá llevar
la linterna de 6 V?

Ya sea que un experimento produzca resultados cualitativos o cuantitativos, los métodos de análisis estadístico requieren enfocarse en ciertos aspectos numéricos de los
datos (como la proporción muestral x/n, la media x
_ o la desviación estándar s). El
concepto de variable aleatoria permite pasar de los resultados experimentales a la
función numérica de los resultados. Existen dos tipos fundamentalmente diferentes
de variables aleatorias: las variables aleatorias discretas y las variables aleatorias continuas. En este capítulo, se examinan las propiedades básicas y se discuten los ejemplos más importantes de variables discretas. El capítulo 4 se enfoca en las variables
aleatorias continuas.

VALOR ESPERADO DE X: Sea X una variable aleatoria discreta con un conjunto de valores posibles D y una función masa de probabilidad p(x). El valor esperado o valor medio de X, denotado por
E(X) o X, es
E(X) X
xD
x p(x)

Subtopic

VALOR ESPERADO DE UNA FUNCION: Suponga que una librería adquiere diez ejemplares de un libro a $6.00 cada uno para venderlos a $12.00 en el entendimiento de que al final de un periodo de 3 meses cualquier
ejemplar no vendido puede ser compensado por $2.00. Si X el número de ejemplares vendidos, entonces el ingreso neto h(X) 12X  2(10  X)  60 10X  40.

Distribución de probabilidad binomial

La media y varianza de X:
Con n 1, la distribución binomial llega a ser la distribución de Bernoulli. De acuerdo con
el ejemplo 3.18, el valor medio de una variable de Bernoulli es p, así que el número esperado de los S en cualquier ensayo único es p. Como un experimento binomial se compone de n ensayos, la intuición sugiere que para X Bin(n, p), E(X) np, el producto del número de ensayos y la probabilidad de éxito en un solo ensayo. La expresión para V(X) no es tan intuitiva.

EJEMPLO: Una compañía que produce cristales finos sabe por experiencia que 10% de sus copas de mesa tienen imperfecciones
cosméticas y deben ser clasificadas como “de segunda”.
a. Entre seis copas seleccionadas al azar, ¿qué tan probable
es que sólo una sea de segunda?
b. Entre seis copas seleccionadas al azar, ¿qué tan probable es
que por lo menos dos sean de segunda?
c. Si las copas se examinan una por una, ¿cuál es la probabilidad de cuando mucho cinco deban ser seleccionadas
para encontrar cuatro que no sean de segunda?

1. El experimento consta de una secuencia de n experimentos más pequeños llamados ensayos, donde n se fija antes del experimento.
2. Cada ensayo puede dar por resultado uno de los mismos dos resultados posibles (ensayos dicotómicos), los cuales se denotan como éxito (E) y falla (F).
3. Los ensayos son independientes, de modo que el resultado en cualquier ensayo particular no influye en el resultado de cualquier otro ensayo.
4. La probabilidad de éxito es constante de un ensayo a otro; esta probabilidad se denota
por p.

REGLAS DEL VALOR ESPERADO:La función de interés h(X) con bastante frecuencia es una función lineal aX  b. En este
caso, E[h(X)] es fácil de calcular a partir de E(X).

Reglas de varianza
La varianza de h(X) es el valor esperado de la diferencia al cuadrado entre h(X) y su valor esperado: V[h(X)] 2
h (X)
D {h(x)  E[h(X)]}2 p(x)