"История информационных технологий"
Информационные технологии (ИТ, от англ. information technology, IT) — это комплекс взаимосвязанных научных, технологических, инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием, их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы.
Счетные машины 100 - 80 лет до н.э.
Принято считать, что создание «счетных машин» началось в 17 веке, но «Антикитерский механизм» был создан примерно в 80-м году до н.э. Это устройство ещё называют «древнегреческим компьютером». А как ещё можно назвать машину, которая вычисляет положение Солнца, Луны и планет солнечной системы на основе ввода даты (с помощью рычага).
Те компьютеры, которые у нас сейчас есть, никогда бы не появились, если, начиная с древних времен и до открытия электричества не создавались бы механические вычислительные машины.
Создание Интернета было бы невозможно без изобретения телеграфа, телефона и радио. Первое объединение двух компьютеров в Сеть в США (октябрь 1965 года) было по телефонным проводам, так как других коммутируемых линий ещё не было.
Первая сеть компьютеров в СССР появилась ещё раньше - в конце 50-х годов прошлого века и была беспроводной, используя радиочастоту.
В упрощенном виде компьютер можно представить как устройство ввода данных, устройство (процессор) их обрабатывающий и устройство вывода данных. Именно такие действия и выполняет «Антикитерский механизм».
Годфрид Вильгельм фон Лейбниц (21.06.1646 - 14.11.1716) - немецкий математик, физик, изобретатель. Он описал двоичную систему счисления с цифрами 0 и 1, создал комбинаторику как науку, заложил основы математической логики, создал дифференциальное и интегральное исчисления.
Лейбниц изобрел собственную конструкцию арифмометра, гораздо лучше паскалевской, — он умел выполнять умножение, деление, извлечение квадратных и кубических корней, а также возведение в степень.
Предложенные Готфридом ступенчатый валик и подвижная каретка легли в основу всех последующих арифмометров вплоть до XX столетия. «Посредством машины Лейбница любой мальчик может производить труднейшие вычисления», — сказал об этом изобретении один из французских учёных.
Позже Лейбниц в своем труде изложил проект другой вычислительной машины, работающей в двоичной системе, в которой использовался прообраз перфокарты. Единицы и нули в воображаемой машине были представлены соответственно открытыми или закрытыми отверстиями в перемещающейся банке, через которую предполагалось пропускать шарики, падающие в желоба под ней.
Арифмометр Годфрида фон Лейбница (1673 год)
Ткацкий станок Жозефа Жаккарда (1808 год)
Жозе́ф Мари́ Жакка́р (иногда Жаккард; фр. Joseph Marie Jacquard; 7 июля 1752, Лион — 7 августа 1834, Уллен[fr], департамент Рона) — французский изобретатель ткацкого станка для узорчатых материй (известного как машина Жаккарда).
Жозеф Мари Жаккар
Сын ткача, он поступил в учение к переплётчику, потом стал словолитчиком и, наконец, ткачом. Первую попытку устроить самодействующий ткацкий станок он сделал в 1790 году; потом изобрёл машину для вязания сетей и повёз её в 1804 году в Париж, где модели Вокансона навели его на окончательную конструкцию станка, полностью завершённого только в 1808 году. Наполеон I наградил Жаккара пенсией в 3000 франков и правом взимания премии в 50 франков с каждого действующего во Франции стана его конструкции.
Особое место в истории ИТ занимает, как ни странно, ткацкий станок Жозефа Жаккарда (1752-1834). Станок не делал никаких вычислений, но в его работе использовалась лента из плотного материала с рядом отверстий. Получалось то, что называется перфолентой (от слова перфорация пробивка отверстий). Специальный щуп управляющего устройства машины находил эти отверстия и в соответствии с ними перемещал основы ткани, создавая тем самым требуемый рисунок.
Возможно, это изобретение лионского ткача подсказало идею Чарльзу Бэббиджу использовать в «Аналитической машине» (1834 год) программы на перфокартах. В 1812 году во Франции работало уже 18 тысяч станков Жаккарда.
Механические компьютеры Чарльза Бэббиджа (1819 - 1851 годы)
Информационные технологии
Чарльз Бэббидж (Charles Babbage; 26.12.1791 — 18.10.1871) - английский математик, физик, механик, изобретатель. В 1819 году он приступил к созданию малой разностной машины (от название математического метода конечных разностей). В 1822 году Бэббидж закончил её строительство и выступил перед Королевским Астрономическим обществом с докладом о применении машинного механизма для вычисления астрономических и математических таблиц.
В 1823 году Бэббидж приступил к разработке большой разностной машины. Большая разностная машина должна была состоять из 25 000 деталей, весить почти 14 тонн и быть 2,5 метра высотой. Кроме того, она должна была быть оснащена печатным устройством для вывода результатов. Память была рассчитана на 1000 50-разрядных чисел.
Проект получился настолько масштабным, что технологии того времени с этим не справились. В 1834 году работы по созданию машины были приостановлены.
В том же 1834 году Бэббидж начал проектировать программируемую (!) вычислительную машину, которую он назвал Аналитической (прообраз современного компьютера). В отличие от разностной машины, Аналитическая машина позволяла решать более широкий ряд задач. Именно эта машина стала делом его жизни и принесла посмертную славу. Архитектура современного компьютера во многом схожа с архитектурой Аналитической машины, которая состояла из следующих блоков:
"Склад" - для хранения как значений переменных, с которыми производятся операции, так и результатов операций. В современной терминологии это называется памятью.
"Мельница" - для операции над переменными, а также хранения в регистрах значение переменных, с которыми в данный момент осуществляет операцию (арифметико-логическое устройство, часть современного процессора).
Третье устройство - для управления последовательностью операций, перемещения переменных в "склад" и извлечения их из "склада", а также для вывода результатов. Оно считывало последовательность операций и переменных с перфокарт.
Перфокарты были двух видов: операционные карты и карты переменных. Из операционных карт можно было составить библиотеку функций. Кроме того, машина должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования.
Как и предыдущий проект, Аналитическая машина так и не была построена при жизни Бэббиджа. Основной причиной стала полное отсутствие финансирования проекта и низкий уровень технологий того времени. Бэббидж не стал в этот раз просить помощи у правительства, так как понимал, что после неудачи с разностной машиной ему всё равно откажут.
Изобретение телеграфа
Первый электромагнитный телеграф создал российский учёный Павел Львович Шиллинг в 1832 году. Впоследствии электромагнитный телеграф был построен в Германии — Карлом Гауссом и Вильгельмом Вебером (1833), в Великобритании — Куком и Уитстоном (1837), а в США электромагнитный телеграф запатентован С. Морзе в 1837 году. Большой заслугой Морзе является изобретение телеграфного кода, где буквы алфавита были представлены комбинацией коротких и длинных сигналов — «точек» и «тире» (код Морзе).
В 1858 году Чарльз Уитстон (англ. Sir Charles Wheatstone; 06.02.1802 — 19.11.1875) — английский физик, изобретает телеграфный аппарат, в котором передача ведется не ключом Морзе, а автоматически. Достигается это применением бумажных лент, на которых текст телеграмм наносится предварительно в виде пробитых рядов отверстий, соответствующих точкам и тире. Так появились перфоленты, пропускаемые через считывающий передающий аппарат с большой скоростью. Телеграф Уотсона позволил увеличить скорость передачи до 400-500 букв в минуту. Однако оставалась необходимость расшифровки принятых телеграмм.
Эту проблему, в тои же году решил американец Дейвид Эдвин Юз (1831-1900), изобретший буквопечатающий аппарат. Используя принцип синхронности и синфазности работы передающего и приемного аппаратов, основой которых стали одинаковые колеса с выгравированными по их окружности буквами, цифрами и знаками препинания, аппараты Юза позволили передавать около 125 букв в минуту, но зато депеша принималась сразу в читаемом варианте, что в целом увеличило скорость передачи в 5 раз.
Следующим этапом стал изобретённый в 1874 году "печатающий многократный телеграф" французского изобретателя Жана Мориса Эмиля Бодо (1845-1903). Аппарат Бодо позволил использовать для передачи сигналов время пауз между точками и тире. Стало возможным, используя специальный коммутатор, по одной линии работать сразу четырем, шести и более телеграфистам. Передача велась специальным равномерным пятизначным кодом. Наибольшее распространение получили двукратные аппараты Бодо. Работавшие на дальние связи почти до конца 20 века и передававшие до 760 знаков в минуту.
Совершенствование передачи информации по телеграфу готовило почву для создания теории пакетной коммутации, которая используется сейчас в сети Интернет.
К началу 20 века на Земле было проложено около 8 млн. км телеграфных проводов.
История изобретения телеграфа
Изобретение телефона
7 марта 1876 года Александром Беллом был получен патент на изобретение телефона. Любопытно, что А. Белл пытался изобрести не телефон, а «гармонический телеграф». В то время в телеграфии испытывался огромный дефицит линий.
25 июня 1876 года Александр Белл впервые продемонстрировал свой телефон на первой Всемирной электротехнической выставке в Филадельфии. Трубка Белла служила по очереди и для передачи, и для приёма человеческой речи. В телефоне А. Белла не было звонка, позже он был изобретён коллегой А. Белла — Т. Ватсоном (1878 год). Вызов абонента производился через трубку при помощи свистка. Дальность действия этой линии не превышала 500 метров.
Первая электронная лампа
В 1883 году Томас Эдисон (11.02.1847 — 18.10.1931), американский изобретатель пытался увеличить срок службы осветительной лампы с угольной нитью накаливания в вакууммированной стеклянной колбе. С этой целью в одном из опытов он ввёл в вакуумное пространство лампы металлическую пластину с проводником, выведенным наружу. При экспериментах он заметил, что вакуум проводит ток, причём только в направлении от электрода к накалённой нити и только тогда, когда нить накалена. Это было неожиданно для того времени, в то время считалось, что вакуум не может проводить ток, так как в нём нет носителей заряда. Изобретатель не понял тогда значение этого открытия, но на всякий случай запатентовал. Вакуумные электронные лампы стали элементной базой компьютеров первого поколения.
электронная лампа
Электрическая «считающая машина» Германа Холлерита (1890 год)
В 1890 году для подсчета данных переписи населения США использовался статистический электрический табулятор, созданный Германом Холлеритом (29.02.1860 — 17.11.1929).
Впервые для хранения информации и программы для машины стали применяться перфокарты. В 1880 году Холлерит поступил на работу в Бюро по переписи населения в Вашингтоне. Он прибыл туда как раз после переписи населения США. Ручная обработка данных требовала работы сотни служащих в течение семи с половиной лет.
Изобретение Холлерита вышло победителем в соревновании с несколькими другими системами, и с ним был заключен контракт на проведение следующей переписи 1890 года. Система Холлерита стала еще одним этапом в истории развития компьютеров.
Перфокарты загружали в специальные устройства, соединенные с табуляционной машиной, где они нанизывались на ряды тонких игл, по одной игле на каждую из 240 перфорируемых позиций на карте.
Когда игла попадала в отверстие, она проходила его, замыкая контакт в соответствующей электрической цепи машины; это в свою очередь приводило к тому, что счетчик, состоящий из вращающихся цилиндров, продвигался на одну позицию вперед.
Открытие радио
В России изобретателем радиотелеграфии традиционно считают А. С. Попова.
Создателем первой успешной системы обмена информацией с помощью радиоволн (радиотелеграфии) считается итальянский инженер Гульельмо Маркони (1895), который соединил передатчик Генриха Герца и приёмник А. С. Попова, в одно устройство.
Но конструкцию, которую имеют все современные радио устройства создал Никола Тесла, запатентовавший в 1893 году радиопередатчик, а в 1895 г. приёмник. Конструкция устройств Теслы позволяла модулировать акустическим сигналом колебательный контур передатчика, осуществлять радио передачу сигнала на расстояние и принимать его приёмником, который преобразовывал сигнал в акустический звук.
А.С.Попов
Электронно-лучевая трубка
До появления жидкокристаллических дисплеев, все мониторы компьютеров, как и телевизоры, работали на основе электронно-лучевой трубки (ЭЛТ), которая была создана в 1907 году профессором Петербургского технологического института Б.Л.Розингом. Изобретение называлось «Способ электрической передачи изображений на расстояния». Для преобразования электрического сигнала в точки видимого изображения применялась катодно-лучевая трубка. Развёртка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) — с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму.
9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ. Передаваемое изображение было статичным.
В 1923 году В.К.Зворыкин (ученик Б. Розинга, эмигрировавший после революции в США) подал заявку на телевидение, основанное полностью на электронном принципе, а в 1931 году создал первую в мире передающую электронную трубку, названную «иконоскопом», положившую начало развитию электронного телевидения.
Первое регулярное телевещание на электронном принципе в УКВ-диапазоне началось в 1935 году в Германии.
«Телекнига» П. Отле
Бельгийский ученый и основатель теории документоведения Поль Отле в 1934 году предложил соединить телефонную связь с телевизионным экраном.
Гениально предвосхитив создание мониторов, интернета, поисковых систем и браузеров Отле назвал такую конструкцию «телекнига»
Поль Отле