"История информационных технологий"

"История информационных        технологий"

Информационные технологии (ИТ, от англ. information technology, IT) — это комплекс взаимосвязанных научных, технологических, инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием, их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы.

Счетные машины 100 - 80 лет до н.э.

Счетные машины 100 - 80 лет до н.э.

Принято считать, что создание «счетных машин» началось в 17 веке, но «Антикитерский механизм» был создан примерно в 80-м году до н.э. Это устройство ещё называют «древнегреческим компьютером». А как ещё можно назвать машину, которая вычисляет положение Солнца, Луны и планет солнечной системы на основе ввода даты (с помощью рычага).

Те компьютеры, которые у нас сейчас есть, никогда бы не появились, если, начиная с древних времен и до открытия электричества не создавались бы механические вычислительные машины.
Создание Интернета было бы невозможно без изобретения телеграфа, телефона и радио. Первое объединение двух компьютеров в Сеть в США (октябрь 1965 года) было по телефонным проводам, так как других коммутируемых линий ещё не было.
Первая сеть компьютеров в СССР появилась ещё раньше - в конце 50-х годов прошлого века и была беспроводной, используя радиочастоту.

В упрощенном виде компьютер можно представить как устройство ввода данных, устройство (процессор) их обрабатывающий и устройство вывода данных. Именно такие действия и выполняет «Антикитерский механизм».

Годфрид Вильгельм фон Лейбниц (21.06.1646 - 14.11.1716) - немецкий математик, физик, изобретатель. Он описал двоичную систему

Годфрид Вильгельм фон Лейбниц (21.06.1646 - 14.11.1716) - немецкий математик, физик, изобретатель. Он описал двоичную систему счисления с цифрами 0 и 1, создал комбинаторику как науку, заложил основы математической логики, создал дифференциальное и интегральное исчисления.
Лейбниц изобрел собственную конструкцию арифмометра, гораздо лучше паскалевской, — он умел выполнять умножение, деление, извлечение квадратных и кубических корней, а также возведение в степень.

Предложенные Готфридом ступенчатый валик и подвижная каретка легли в основу всех последующих арифмометров вплоть до XX столетия. «Посредством машины Лейбница любой мальчик может производить труднейшие вычисления», — сказал об этом изобретении один из французских учёных.
Позже Лейбниц в своем труде изложил проект другой вычислительной машины, работающей в двоичной системе, в которой использовался прообраз перфокарты. Единицы и нули в воображаемой машине были представлены соответственно открытыми или закрытыми отверстиями в перемещающейся банке, через которую предполагалось пропускать шарики, падающие в желоба под ней.

Предложенные Готфридом ступенчатый валик и подвижная каретка легли в основу всех последующих арифмометров вплоть до XX столет

Арифмометр Годфрида фон Лейбница (1673 год)

Ткацкий станок Жозефа Жаккарда (1808 год)

Жозе́ф Мари́ Жакка́р (иногда Жаккард; фр. Joseph Marie Jacquard; 7 июля 1752, Лион — 7 августа 1834, Уллен[fr], департамент Р

Жозе́ф Мари́ Жакка́р (иногда Жаккард; фр. Joseph Marie Jacquard; 7 июля 1752, Лион — 7 августа 1834, Уллен[fr], департамент Рона) — французский изобретатель ткацкого станка для узорчатых материй (известного как машина Жаккарда).


Жозеф Мари Жаккар
Сын ткача, он поступил в учение к переплётчику, потом стал словолитчиком и, наконец, ткачом. Первую попытку устроить самодействующий ткацкий станок он сделал в 1790 году; потом изобрёл машину для вязания сетей и повёз её в 1804 году в Париж, где модели Вокансона навели его на окончательную конструкцию станка, полностью завершённого только в 1808 году. Наполеон I наградил Жаккара пенсией в 3000 франков и правом взимания премии в 50 франков с каждого действующего во Франции стана его конструкции.

Особое место в истории ИТ занимает, как ни странно, ткацкий станок Жозефа Жаккарда (1752-1834). Станок не делал никаких вычислений, но в его работе использовалась лента из плотного материала с рядом отверстий. Получалось то, что называется перфолентой (от слова перфорация пробивка отверстий). Специальный щуп управляющего устройства машины находил эти отверстия и в соответствии с ними перемещал основы ткани, создавая тем самым требуемый рисунок.
Возможно, это изобретение лионского ткача подсказало идею Чарльзу Бэббиджу использовать в «Аналитической машине» (1834 год) программы на перфокартах. В 1812 году во Франции работало уже 18 тысяч станков Жаккарда.

Особое место в истории ИТ занимает, как ни странно, ткацкий станок Жозефа Жаккарда (1752-1834). Станок не делал никаких вычис

Механические компьютеры Чарльза Бэббиджа (1819 - 1851 годы)

Информационные технологии

Чарльз Бэббидж (Charles Babbage; 26.12.1791 — 18.10.1871) - английский математик, физик, механик, изобретатель. В 1819 году о

Чарльз Бэббидж (Charles Babbage; 26.12.1791 — 18.10.1871) - английский математик, физик, механик, изобретатель. В 1819 году он приступил к созданию малой разностной машины (от название математического метода конечных разностей). В 1822 году Бэббидж закончил её строительство и выступил перед Королевским Астрономическим обществом с докладом о применении машинного механизма для вычисления астрономических и математических таблиц.

В 1823 году Бэббидж приступил к разработке большой разностной машины.

В 1823 году Бэббидж приступил к разработке большой разностной машины. Большая разностная машина должна была состоять из 25 000 деталей, весить почти 14 тонн и быть 2,5 метра высотой. Кроме того, она должна была быть оснащена печатным устройством для вывода результатов. Память была рассчитана на 1000 50-разрядных чисел.
Проект получился настолько масштабным, что технологии того времени с этим не справились. В 1834 году работы по созданию машины были приостановлены.

В том же 1834 году Бэббидж начал проектировать программируемую (!) вычислительную машину, которую он назвал Аналитической (прообраз современного компьютера). В отличие от разностной машины, Аналитическая машина позволяла решать более широкий ряд задач. Именно эта машина стала делом его жизни и принесла посмертную славу. Архитектура современного компьютера во многом схожа с архитектурой Аналитической машины, которая состояла из следующих блоков:
"Склад" - для хранения как значений переменных, с которыми производятся операции, так и результатов операций. В современной терминологии это называется памятью.
"Мельница" - для операции над переменными, а также хранения в регистрах значение переменных, с которыми в данный момент осуществляет операцию (арифметико-логическое устройство, часть современного процессора).
Третье устройство - для управления последовательностью операций, перемещения переменных в "склад" и извлечения их из "склада", а также для вывода результатов. Оно считывало последовательность операций и переменных с перфокарт.
Перфокарты были двух видов: операционные карты и карты переменных. Из операционных карт можно было составить библиотеку функций. Кроме того, машина должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования.

Как и предыдущий проект, Аналитическая машина так и не была построена при жизни Бэббиджа. Основной причиной стала полное отсутствие финансирования проекта и низкий уровень технологий того времени. Бэббидж не стал в этот раз просить помощи у правительства, так как понимал, что после неудачи с разностной машиной ему всё равно откажут.

r

Как и предыдущий проект, Аналитическая машина так и не была построена при жизни Бэббиджа. Основной причиной стала полное отсутствие финансирования проекта и низкий уровень технологий того времени. Бэббидж не стал в этот раз просить помощи у правительства, так как понимал, что после неудачи с разностной машиной ему всё равно откажут.Вот, что писал Бэббидж в 1851 году: «Все разработки, связанные с Аналитической машиной, выполнены за мой счёт. Я провёл целый ряд экспериментов и дошёл до черты, за которой моих возможностей не хватает. В связи с этим я вынужден отказаться от дальнейшей работы».Только в 1906 году его сын, Генри Бэббидж, совместно с фирмой Монро построил действующую модель Аналитической машины, включающую арифметическое устройство и устройство для печатания результатов. Машина Бэббиджа оказалась работоспособной.В 1864 году Чарльз Бэббидж написал: «Пройдёт, вероятно, полстолетия, прежде чем люди убедятся, что без тех средств, которые я оставляю после себя, нельзя будет обойтись». В своём предположении он ошибся на 30 лет.Только через 80 лет после этого высказывания, в 1944 году была построена электронная машина МАРК-I, которую назвали «осуществлённой мечтой Бэббиджа».Архитектура МАРК-I была очень схожа с архитектурой Аналитической машины.

Изобретение телеграфа

Первый электромагнитный телеграф создал российский учёный Павел Львович Шиллинг в 1832 году. Впоследствии электромагнитный те

Первый электромагнитный телеграф создал российский учёный Павел Львович Шиллинг в 1832 году. Впоследствии электромагнитный телеграф был построен в Германии — Карлом Гауссом и Вильгельмом Вебером (1833), в Великобритании — Куком и Уитстоном (1837), а в США электромагнитный телеграф запатентован С. Морзе в 1837 году. Большой заслугой Морзе является изобретение телеграфного кода, где буквы алфавита были представлены комбинацией коротких и длинных сигналов — «точек» и «тире» (код Морзе).
В 1858 году Чарльз Уитстон (англ. Sir Charles Wheatstone; 06.02.1802 — 19.11.1875) — английский физик, изобретает телеграфный аппарат, в котором передача ведется не ключом Морзе, а автоматически. Достигается это применением бумажных лент, на которых текст телеграмм наносится предварительно в виде пробитых рядов отверстий, соответствующих точкам и тире. Так появились перфоленты, пропускаемые через считывающий передающий аппарат с большой скоростью. Телеграф Уотсона позволил увеличить скорость передачи до 400-500 букв в минуту. Однако оставалась необходимость расшифровки принятых телеграмм.

Эту проблему, в тои же году решил американец Дейвид Эдвин Юз (1831-1900), изобретший буквопечатающий аппарат. Используя принцип синхронности и синфазности работы передающего и приемного аппаратов, основой которых стали одинаковые колеса с выгравированными по их окружности буквами, цифрами и знаками препинания, аппараты Юза позволили передавать около 125 букв в минуту, но зато депеша принималась сразу в читаемом варианте, что в целом увеличило скорость передачи в 5 раз.
Следующим этапом стал изобретённый в 1874 году "печатающий многократный телеграф" французского изобретателя Жана Мориса Эмиля Бодо (1845-1903). Аппарат Бодо позволил использовать для передачи сигналов время пауз между точками и тире. Стало возможным, используя специальный коммутатор, по одной линии работать сразу четырем, шести и более телеграфистам. Передача велась специальным равномерным пятизначным кодом. Наибольшее распространение получили двукратные аппараты Бодо. Работавшие на дальние связи почти до конца 20 века и передававшие до 760 знаков в минуту.
Совершенствование передачи информации по телеграфу готовило почву для создания теории пакетной коммутации, которая используется сейчас в сети Интернет.
К началу 20 века на Земле было проложено около 8 млн. км телеграфных проводов.

История изобретения телеграфа

Изобретение телефона

Изобретение телефона

7 марта 1876 года Александром Беллом был получен патент на изобретение телефона. Любопытно, что А. Белл пытался изобрести не телефон, а «гармонический телеграф». В то время в телеграфии испытывался огромный дефицит линий.
25 июня 1876 года Александр Белл впервые продемонстрировал свой телефон на первой Всемирной электротехнической выставке в Филадельфии. Трубка Белла служила по очереди и для передачи, и для приёма человеческой речи. В телефоне А. Белла не было звонка, позже он был изобретён коллегой А. Белла — Т. Ватсоном (1878 год). Вызов абонента производился через трубку при помощи свистка. Дальность действия этой линии не превышала 500 метров.

r

Долгое время именно Александр Белл считался официальным изобретателем телефона и только 11 июня 2002 года Конгресс США в резолюции №269 признал право изобретения телефона за Антонио Меуччи.В 1860 году в США иммигрант итальянского происхождения Антонио Меуччи продемонстрировал устройство, которое могло передавать звуки по проводам, и названное им Telectrophon. Меуччи подал заявку на патент своего изобретения в 1871 году.

Первая электронная лампа

В 1883 году Томас Эдисон (11.02.1847 — 18.10.1931), американский изобретатель пытался увеличить срок службы осветительной лам

В 1883 году Томас Эдисон (11.02.1847 — 18.10.1931), американский изобретатель пытался увеличить срок службы осветительной лампы с угольной нитью накаливания в вакууммированной стеклянной колбе. С этой целью в одном из опытов он ввёл в вакуумное пространство лампы металлическую пластину с проводником, выведенным наружу. При экспериментах он заметил, что вакуум проводит ток, причём только в направлении от электрода к накалённой нити и только тогда, когда нить накалена. Это было неожиданно для того времени, в то время считалось, что вакуум не может проводить ток, так как в нём нет носителей заряда. Изобретатель не понял тогда значение этого открытия, но на всякий случай запатентовал. Вакуумные электронные лампы стали элементной базой компьютеров первого поколения.

электронная лампа

электронная лампа

Электрическая «считающая машина» Германа Холлерита (1890 год)

В 1890 году для подсчета данных переписи населения США использовался статистический электрический табулятор, созданный Германом Холлеритом (29.02.1860 — 17.11.1929).
Впервые для хранения информации и программы для машины стали применяться перфокарты. В 1880 году Холлерит поступил на работу в Бюро по переписи населения в Вашингтоне. Он прибыл туда как раз после переписи населения США. Ручная обработка данных требовала работы сотни служащих в течение семи с половиной лет.
Изобретение Холлерита вышло победителем в соревновании с несколькими другими системами, и с ним был заключен контракт на проведение следующей переписи 1890 года. Система Холлерита стала еще одним этапом в истории развития компьютеров.

В 1890 году для подсчета данных переписи населения США использовался статистический электрический табулятор, созданный Герман
Перфокарты загружали в специальные устройства, соединенные с табуляционной машиной, где они нанизывались на ряды тонких игл,

Перфокарты загружали в специальные устройства, соединенные с табуляционной машиной, где они нанизывались на ряды тонких игл, по одной игле на каждую из 240 перфорируемых позиций на карте.
Когда игла попадала в отверстие, она проходила его, замыкая контакт в соответствующей электрической цепи машины; это в свою очередь приводило к тому, что счетчик, состоящий из вращающихся цилиндров, продвигался на одну позицию вперед.

Открытие радио

В России изобретателем радиотелеграфии традиционно считают А. С. Попова.
Создателем первой успешной системы обмена информацией с помощью радиоволн (радиотелеграфии) считается итальянский инженер Гульельмо Маркони (1895), который соединил передатчик Генриха Герца и приёмник А. С. Попова, в одно устройство.
Но конструкцию, которую имеют все современные радио устройства создал Никола Тесла, запатентовавший в 1893 году радиопередатчик, а в 1895 г. приёмник. Конструкция устройств Теслы позволяла модулировать акустическим сигналом колебательный контур передатчика, осуществлять радио передачу сигнала на расстояние и принимать его приёмником, который преобразовывал сигнал в акустический звук.

r

Первый патент на беспроводную связь получил в 1872 г. Малон Лумис (Mahlon Loomis); в Германии создателем радио считают Генриха Герца (1888); в США - Дэвида Хьюза (1878), Томаса Эдисона (1875), Николу Теслу (1891). В других странах, также были свои изобретатели радио.

А.С.Попов

Электронно-лучевая трубка

До появления жидкокристаллических дисплеев, все мониторы компьютеров, как и телевизоры, работали на основе электронно-лучевой трубки (ЭЛТ), которая была создана в 1907 году профессором Петербургского технологического института Б.Л.Розингом. Изобретение называлось «Способ электрической передачи изображений на расстояния». Для преобразования электрического сигнала в точки видимого изображения применялась катодно-лучевая трубка. Развёртка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) — с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму.

9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ. Передаваемое изображение было статичным.
В 1923 году В.К.Зворыкин (ученик Б. Розинга, эмигрировавший после революции в США) подал заявку на телевидение, основанное полностью на электронном принципе, а в 1931 году создал первую в мире передающую электронную трубку, названную «иконоскопом», положившую начало развитию электронного телевидения.
Первое регулярное телевещание на электронном принципе в УКВ-диапазоне началось в 1935 году в Германии.

«Телекнига» П. Отле

Бельгийский ученый и основатель теории документоведения Поль Отле в 1934 году предложил соединить телефонную связь с телевизионным экраном.
Гениально предвосхитив создание мониторов, интернета, поисковых систем и браузеров Отле назвал такую конструкцию «телекнига»

Поль Отле

Поль Отле

Музей компьютерной истории

Официального мирового признания первенства какого-либо компьютера нет. В США долгие годы шел конфликт по поводу признания первого появления электронного компьютера. Было определено, что первым компьютером в современном смысле этого слова является «ENIAC», однако в 1973 году Федеральный суд США постановил отозвать патент ENIAC и заключил, что «ABC» является первым «компьютером».

r

Вычислительные машины создаваемые в первой трети 20 века были по-прежнему, только или в основном, механические: вычислительная машина российского инженера А. Н. Крылова, решающая дифференциальные уравнения (1904 год); Mercedes-Euklid VII - вычислительный автомат, способный самостоятельно осуществлять все четыре основных арифметических действия (1919 год); механическая интегрирующая машина Ванневара Буша, применяющаяся при расчёте траектории стрельбы корабельных орудий (1930 год, США); электродинамическая счётно-аналитическая машина «САМ», состоящая из механического интегратора и электрического расчётного стола (1935 год, СССР).Каждая из этих вычислительных машин тоже была первой в своей стране или в мире.

Компьютер «ABC»

Компьютер «ABC»

в США Джон Винсент Атанасов (англ. John Vincent Atanasoff, 04.10.1903 — 15.06.1995), профессор математики и физики в колледже штата Айова занялся созданием машины для решения больших систем линейных алгебраических уравнений. Помогал ему Клиффорд Эдвард Берри.
Задуманная в 1937 году, машина не была программируемой, и разрабатывалась только в целях решения систем линейных уравнений. Компьютер Атанасова — Берри (Atanasoff-Berry Computer, ABC) — первое цифровое вычислительное устройство, а также первая вычислительная машина без движущихся частей.
Несмотря на то, что устройство для хранения промежуточных результатов на основе бумажных карт было довольно ненадёжным, в 1942 году она была успешно протестирована.

Компьютер «Colossus»

Компьютер «Colossus»

В 1943 году был построен секретный британский компьютер «Colossus», который содержал в себе 1500 электронных ламп. «Колосс» был предназначен для расшифровки перехваченных немецких радиосообщений. Томми Флауэрс (22.12.1905 — 28.10.1998) начал проектировать «Colossus» с "чистого листа" и, несмотря на негативное отношение среди его коллег к электронным лампам, решил перенести весь процесс моделирования работы шифра на ламповые схемы.
Благодаря этому количество входных перфолент сократилось до одной, исчезла проблема синхронизации, а скорость считывания повысилась до 5000 знаков в секунду. Полученная схема позволяла расшифровывать сообщения за 2-3 часа.

r

Компьютеры «Mark» Говарда ЭйкенаВ феврале 1944 году в США Говард Хатауэй Эйкен (англ. Howard Hathaway Aiken; 09.03.1900 — 14.03.1973) построил «ASCC Mark I». ASCC - это Automatic Sequence Controlled Calculator или вычислительное устройство, управляемое автоматическими последовательностями. Строительство шло на средства от компании IBM и при помощи Грейса Хоппера (англ. Grace Murray Hopper).Создание «Mark I» велось на основе описания аналитической машины Бэббиджа. Сэр Чарльз мог бы гордиться своим последователем. "Марк-1" был длиной 15,3 метра, высотой 2,4 метра, содержал 800 км проводов и более 3 млн соединений. Вес машины составлял около 35 тонн. "Марк-1" мог выполнять любую заданную последовательность из четырех арифметических действий (сложение, вычитание, умножение, деление), а также ссылаться на предыдущий результат без вмешательства человека. Машина программировалась при помощи бумажной перфоленты и могла оперировать числами длиной до 23 разрядов."Марк I" применялась ВМС США для решения различных задач оборонного характераВ 1947 году Эйкен заканчивает «Mark II», за которым следуют «Mark III» (1949 год) и «Mark IV» (1952 год). Компьютер «Марк IV» был полностью электронным устройством. Третья и четвертая модели "Марка" были оснащены памятью на основе магнитных барабанов, а в «Mark IV» применялась ещё компьютерная память, основанная на использовании магнитных сердечников.

Джон фон Ньюманн и «EDVAC»

Джон фон Ньюманн и «EDVAC»

В начале 1944 года в США начинается работа по проектированию и созданию ЭВМ под названием «EDVAC» - Electronic Discrete Variable Automatic Computer или электронный автоматический вычислитель с дискретными переменными.
Компьютер состоял из 3563 электровакуумных ламп 19 различных типов, 8000 диодов, 5500 конденсаторов, 12000 резисторов и потреблял 50 кВт энергии. Занимаемая площадь — 45,5 м², масса — 7850 кг. Полный состав обслуживающего персонала — 30 человек на каждую 8-часовую смену.

В переводе на современный язык архитектура компьютера по Ньюманну состоит из вычисляющего логического устройства, устройства управления, запоминающего устройства и внешних устройств.
Следует отметить, что почти тоже самое (за исключением внешних устройств) было в аналитической машине Чарльза Бэббиджа, спроектированной 111 лет назад (в 1834 году). Только Бэббидж использовал более актуальную для тех времен сельхозтерминологию - "мельница" и "склад".
Создание «EDVAC» завершилось только в 1952 году и его архитектура сильно отличалась от той, что была описана в документе Ньюманна.

Компьютер использовал двоичную систему счисления, объём памяти составлял 1024 44-разрядных слов или 5,5 килобайт в современной терминологии. Формат команды: четырехадресный - два адреса источников, адрес записи результата и адрес следующей команды.
«EDVAC» состоял из следующих компонентов:
устройство чтения/записи с магнитной ленты;
контролирующее устройство с осциллографом;
устройство-диспетчер, принимающее инструкции от контролирующего устройства и из памяти и направляющее их в другие устройства;
вычислительное устройство, выполняющее за раз одну арифметическую операцию над парой чисел и посылающее результат в память;
таймер;
устройство памяти, состоящее из двух наборов по 64 ртутных акустических линий задержки, в каждой линии хранилось по 8 слов;
три временных регистра, в каждом из которых хранилось одно слово. Время операции сложения — 864 микросекунды, умножения — 2900 микросекунд (2,9 миллисекунды).

с июня 1943 года по осень 1945 года создавался компьютер «ENIAC» - «Electronic Numerical Integrator and Computer» или электронный числовой интегратор и компьютер. Причем, слова "and Computer" были добавлены уже после начала строительства ENIAC.

Всего комплекс включал в себя 17 468 ламп 16 различных типов, 7 200 кремниевых диодов, 1 500 реле, 70 000 резисторов и 10 000 конденсаторов. Вес — 27 тонн (по другим данным 70 тонн), потребляемая мощность — 174 кВт, вычислительная мощность — 357 операций умножения или 5000 операций сложения в секунду. Тактовая частота — 100 кГц, то есть один импульс каждые 10 микросекунд.
Устройство ввода-вывода данных было в виде табулятора перфокарт компании IBM: 125 карт в минуту на ввод и 100 карт в минуту на вывод. Вычисления производились в десятичной системе, которой было отдано предпочтение перед двоичной системой. Компьютер оперировал числами максимальной длиной в 20 разрядов.

Компьютер «ENIAC»

Компьютер «ENIAC»
Компьютер «EDSAC» Мориса Уилкса и Ассемблер

Компьютер «EDSAC» Мориса Уилкса и Ассемблер

Язык программирования, основанный на использовании мнемонических обозначений, позднее получил название Ассемблера (от assembler — сборщик), а преобразующая программа — программой ассемблера.
Еще в 19 веке Чарльз Бэббидж выдвинул идею о создании и автоматизации использования библиотеки стандартных подпрограмм. Главная сложность здесь заключалась в том, что адреса команд и переменных подпрограммы менялись в зависимости от ее размещения в памяти. Поэтому, например, при "ручном" переносе подпрограммы в другую программу к каждому адресу обычно приходилось добавлять некоторую константу.

Уиллер сумел автоматизировать этот процесс: достаточно было ввести особую команду - идентификатор, и машина сама проделывала работу по настройке и размещению подпрограммы внутри основной программы. Происхождение термина "программа ассемблера" как раз и связано с тем, что она как бы "собирала" последовательности подпрограмм. Языки ассемблера широко используются и в настоящее время, поскольку позволяют "сжать" программу до минимального размера и выполнить её максимально быстро и эффективно.

В 1949 году в Кембриджском университете (Великобритания) группа во главе с Морисом Уилксом (англ. Maurice Vincent Wilkes; 26.06.1913 — 29.11.2010) создает компьютер «EDSAC» (англ. Electronic Delay Storage Automatic Computer). Это был первый в мире компьютер с хранимой в памяти программой. Архитектура «EDSAC» была аналогичной архитектуре американского «EDVAC».

Компьютер содержал 3000 электронных ламп. Оперативная память состояла из 32 ртутных ультразвуковых линий задержки (РУЛЗ), каждая из которых хранила 32 слова по 17 бит, включая бит знака — всего это даёт 1024 ячеек памяти. Была возможность включить дополнительные линии задержки, что позволяло работать со словами в 35 двоичных разрядов (включая бит знака). Вычисления производились в двоичной системе со скоростью от 100 до 15 000 операций в секунду. Потребляемая мощность — 12 кВт, занимаемая площадь — 20 м²

Электронно-счётные машины С. А. Лебедева

Электронно-счётные машины С. А. Лебедева

В 1947 году директором Института электротехники АН УССР в Киеве становится Сергей Алексеевич Лебедев (20.10.1902 — 03.07.1974). Под его руководством в 1948—1950 годах была создана первая в СССР и континентальной Европе ЭВМ - Малая электронно-счётная машина (МЭСМ).

В качестве основных идей для реализации МЭСМ С.А. Лебедев, в частности, предложил следующее:
- представление всей информации в двоичном алфавите и обработка ее в двоичной системе счисления;
- программный принцип управления и размещение программ в памяти машины;
- иерархическая организация запоминающих устройств с применением разнофункциональных уровней памяти;
- элементная база – триггеры и логические вентили на электронных лампах;
- внешнее запоминающее устройство – на магнитном барабане (использование магнитного барабана для запоминания больших объемов информации было возможно первым в мире).
МЭСМ занимала площадь 60 м2, быстродействие составляло 3000 операций в минуту, тактовая частота 5 кГц, количество электровакуумных ламп - 6000 (около 3500 триодов и 2500 диодов), потребляемая мощность 25 кВт. Данные считывались с перфокарт или набирались с помощью штекерного коммутатора.

Описание МЭСМ стало первым учебником в стране по вычислительной технике. МЭСМ явилась прототипом Большой электронной счетной машины БЭСМ…»

В 1950 году С.А. Лебедев был удостоен Сталинской премии и приглашен в Институт точной механики и вычислительной техники (ИТМиВТ) АН СССР в Москве, где руководил созданием БЭСМ-1. БЭСМ была способна выполнять 8000 операций в секунду.
С.А. Лебедев с 1952 года являлся директором ИТМиВТ. Институт впоследствии получил его имя. Под его руководством были созданы 15 типов ЭВМ, начиная с ламповых (БЭСМ-1, БЭСМ-2, М-20) и заканчивая современными суперкомпьютерами на интегральных схемах.