RULE OF DIFFERENTIATION
RULE 1 : CONSTANT RULE
y = f (x) = c
f' (x) = 0
Example : f (x) = 13
Solution : f' (x) = 0
f (x) = mx
f' (x) = m
Example : f (x) = 8x
Solution : f' (x) = 8
RULE 3 : POWER RULE
f (x) = xn
f' (x) = nxn-1
Example : x9
Solution : 9x8
RULE 4 : SUM RULE
f (x) = h (x) + g (x)
f (x) = h' (x) + g' (x)
Example : f (x) = x4 + 4x
Solution : f' (x) = 4x3 + 4
RULE 7 : QUOTIENT RULE
f (x) = h(x) / g(x)
h(x) = u, g(x)
f'(x) = vu' - uv' / v2
Example : 3x / 2x + 1
Solution : u = 3x
u' = 3
v = 2x + 1
v' = 2
f' (x) = (2x + 1)3 - 3x(2) / (2x + 1)2
= 6x + 3 - 6x / (2x + 1)2
= 3 / (2x +1)2
RULE 6 : PRODUCT RULE
f (x) = h(x)g(x)
h(x) = u, g(x) = v
f' (x) = uv' + vu'
Example : (4x - 5) (-2x2 + 3)
Solution : u = 4x - 5
u' = 4
v = -2x2 + 3
v' = -4x
f' (x) = (4x - 5)(-4x) + (-2x2 + 3)(4)
= -16x2 + 20x - 8x2 + 12
= -24x2 + 20x + 12
RULE 5 : CHAIN RULE
f (x) = (ax + b)n
f' (x) = n (ax + b)n-1 (ax + b)1
Example : f (x) = (3x - 3)5
Solution : f' (x) = 5 (3x-3)4 (3x-3)1
= 5 (3x - 3)4 (3)
= 15 (3x - 3)4