Produkte
Mindmap Programm
Gliederungen Programm
Software für Gantt-Diagramme
Anwendungen
Mindmaps für Bildung
Mind Maps für Unternehmen
Mindmaps für die persönliche Entwicklung
Mindmapping Vorteile
Resourcen
Funktionen
Bildung
Persönlich & Arbeit
Desktop
Videoanleitungen
Sehen Sie sich Tipps und Tricks zur Verwendung von Mindomo an.
Hilfezentrum
Detaillierte Hilfeanleitung zur Konfiguration und Verwendung von Mindomo.
Artikel
Die 29 besten Mindmap-Beispiele
Gantt-Diagramm-Software
Concept Map Vorlage
Kostenlose Mindmap-Programm
Was ist eine Concept Map?
Gantt-Diagramm-Maker
Mindmap App
Concept Map Maker
Mindmap Template
Preise
Anmelden
Registrieren
Produkte
Mindmap Programm
Gliederungen Programm
Software für Gantt-Diagramme
Anwendungen
Mindmaps für Bildung
Mind Maps für Unternehmen
Mindmaps für die persönliche Entwicklung
Mindmapping Vorteile
Resourcen
Blog
Videoanleitungen
Hilfezentrum
Mindmapping – was ist das?
Mindmap Online
Erstellen Sie eine Concept-Map
Artikel
Die 29 besten Mindmap-Beispiele
Gantt-Diagramm-Software
Concept Map Vorlage
Kostenlose Mindmap-Programm
Was ist eine Concept Map?
Gantt-Diagramm-Maker
Mindmap App
Concept Map Maker
Mindmap Template
Funktionen
Bildung
Persönlich & Arbeit
Desktop
Preise
Registrieren
Anmelden
Kategorien:
Alle
-
derivatives
-
asymptotes
-
functions
-
continuity
von
Steve Kangas
Vor 17 Jahren
1605
Derivatives
Öffnen
Mehr dazu
Calculus III
von Melanie Chua
Calculus III
von Melanie Chua
Chapter 5: Trigonometric Function
von Yap Wei Li
VM266 0847
von Rico Tan
Derivatives
What does f' say about f?
Antiderivatives
f'' > 0 means f is concave up. f'' < 0 means f is concave down.
f' > 0 means f is increasing. f'< 0 means f is decreasing.
The derivative as function
Higher derivatives (derivatives of derivatives)
Differentiable functions are continuous
The other notation: dy/dx
Derivatives
Finding the derivative using the definition
The derivative is the instantaneous rate of change
The derivative is the slope of the tangent line
Definition
Tangents, velocities, rates of change
Tangents, instantaneous velocity, and instantaneous rates of change are all the same problem
Infinite limits
The trick of dividing top and bottom by the highest power that appears in the denominator
Horizontal asymtotes
Limits as x approaches infinity
Vertical asymptotes
Limits where f(x) goes to infinity and minus infinity
Continuity
Intermediate value theorem
Compositions of continuous functions are continuous
All elementary functions are continuous on their domains
Polynomials are continuous everywhere
Sums, differences, products, and quotients of continuous functions are continuous
Continuous from the right and the left
Definition: as we approach a, the limit of f(x) is f(a)
Limit Laws
Squeeze theorem
Add, subtract, multiply, divide: the limit laws are what you expect
Limits
One-sided limits
Using tables to guess limits. This is a risky way to calculate limits.
Definition: We can make f(x) as close to L as we like by making x close to a
Tangent & Velocity
The tangent problem is the same as finding the instantaneous velocity