jonka aaa Niwa 4 vuotta sitten
347
Lisää tämän kaltaisia
耳から来て、聴神経をと聴覚中枢にたどり着き、ここに来る
聞いて理解するための場所。感覚性の言語野を使う
運動性の言語野
言語工場
言葉を発する機能
DQNはどんなもの?
DQNをさらに工夫する
A3C+TRPOの改良
PPO
A3C ( Asynchronous Advantage Actor-Critic )
ネットワーク
Value-based(従来のDQN、Q学習) + policy-basedの組み合わせ。 アルファ碁ゼロもそうらしい
3. Asynchronous
2. Actor-Critic
この手法のQ関数
従来のQ関数の更新を「1ステップ先でなく、2ステップ以上先まで動かして、更新しよう」という考え方です。
どんな注意ポイントがある?
そのため、どんどん先のAdvantageを使えば良いというわけでもなく、少し先くらいまでのAdvantageを使うのがバランスが良いです。
途中の行動a(t+1)を決めるときに、完成途中のQ関数を使用するので、そこが間違っていたら、その先もどんどん間違うことになります。
Q(s,a) → r(t) + γ・r(t+1) + (γ^2)・max[Q(s_,a)]
通常のQ関数
通常のQ学習の場合は、Q関数が、逆ドミノ的に決まっていく。
CartPoleの場合は、t=200もしくは倒れたときが終端(終了)となるので、終端のsの場合、次の状態s_がないため、 Q(s,a) → r(t) とQ関数が再帰的でなく確定します。
Q(s,a) → r(t) + γ・max[Q(s_,a)]
1. Advantage
DQNの次の世代的存在であるため、DQNからの変化幅が大きく、理解するのがなかなか難しいです。
TRPO
DDQN (DuobleDQN)
DuelingNetwork
メリットは?
これは選択できる行動が増えれば増えるほど、大きな利点になります。
V(s)が行動aによらず毎回学習できる点です。
Q関数が持つ情報は、状態sだけで決まる部分と、行動aしだいで決まる部分に分離できます。
例えば、もう倒れる寸前の状態sであれば、actionが右に押そうが、左に押そうが、そのあと得られるであろう報酬合計はとても少ないと予測できます。
行動価値関数Qには、右に押そうが、左に押そうが、大体そのあと獲得できるであろう報酬合計が、状態sによって決まる部分があります。
参考文献 https://qiita.com/sugulu/items/6c4d34446d4878cde61a
Q関数をNNで近似する +4つの工夫
目的関数は?
の値に近くなるように、ネットワークの重みを学習してあげます。
r(t)+γ・max[Q(s_{t+1},a_{t+1})]
よって、現状のQネットワークの出力Q(s_t, 右に押す)が、
が、現状でもっとも正しそうなものとなります。
、r(t)+γ・max[Q(s_{t+1},a_{t+1})]
ネットワークについて
出力層のニューロンの数は行動の選択肢数です。
CartPoleの場合は右か左にCartを押すので、出力層は2つのニューロンになります。
入力層は状態空間の次元数。
カートポールなら、 カートの位置、速度、棒の角度、角速度の4次元なので、入力層のニューロン数は4つです。
参考文献 http://neuro-educator.com/rl2/
CNNで画像をインプットさせればいいよね?
カートポールみたいに、土台のX軸位置方向と、ポールの傾き加減とか っていうのならインプット簡単なんだけど。
テトリスの状態とって再現むずいよね
画像が入力できない
表であること
状態を離散化する必要がある
Dueling Q Network