Catégories : Tous - gravitación - movimiento - distancia - masas

par Juan Diego Il y a 3 années

463

Movimiento Periodico Juan Diego Diaz 11D

La ley de la gravitación universal, formulada por Isaac Newton, describe cómo dos cuerpos con masa se atraen con una fuerza proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia entre ellos.

Movimiento Periodico
Juan Diego Diaz 11D

Movimiento Periodico Juan Diego Diaz 11D

Movimiento Armonico Simple M.A.S

LA ENERGIA EN EL M.A.S
Durante la oscilación, como muestra el diagrama, hay un intercambio de energía cinética y potencial, manteniéndose la energía total constante ya que se trata de una fuerza conservativa.

Energía total La energía total es la suma de las energías potencial elástica y cinética de un oscilador armónico simple:E=k+Ur

La energía total del oscilador es constante en ausencia de fricción. Cuando un tipo de energía disminuye, el otro aumenta y se mantiene la misma energía total.

Energía cinética La energía cinética KKK depende de la rapidez de un sistema, por lo que se puede usar una gráfica de velocidad contra tiempo para encontrar la energía cinética en el tiempo para un oscilador armónico simple.

• KmaxK, ocurre cuando el sistema tiene rapidez máxima • K=0 ocurre cuando v=0

Energía potencial elástica La energía potencial elástica depende de la posición de nuestro sistema, así que podemos usar una gráfica de posición contra tiempo para encontrar la energía potencial elástica Ur r t en el tiempo para un oscilador armónico simple.

• Ur, maˊxU, cuando el sistema está en el desplazamiento máximo de Ay -A • U_r=0Ur=0U ocurre cuando el sistema está en x=0.

Decimos que una partícula o sistema tiene movimiento armónico simple (m.a.s) cuando vibra bajo la acción de fuerzas restauradoras que son proporcionales a la distancia respecto a la posición de equilibrio. Decimos, entonces, que dicho cuerpo es un oscilador armónico
Elementos o Magnitudes

Frecuencia angular, velocidad angular o pulsación, ω : Representa la velocidad de cambio de la fase del movimiento.

Fase inicial, φ0 : Se trata del ángulo que representa el estado inicial de vibración, es decir, la elongación x del cuerpo en el instante t = 0. Su unidad de medida en el Sistema Internacional es el radián (rad)

Periodo, T: El tiempo que tarda en cumplirse una oscilación completa. Es la inversa de la frecuencia T = 1/f . Su unidad de medida en el Sistema Internacional es el segundo (s).

Frecuencia. f: El número de oscilaciones o vibraciones que se producen en un segundo. Su unidad de medida en el Sistema Internacional es el Hertzio (Hz). 1 Hz = 1 oscilación / segundo = 1 s-1.

Amplitud, A: Elongación máxima. Su unidad de medidas en el Sistema Internacional es el metro (m).

Elongación, x: Representa la posición de la partícula que oscila en función del tiempo y es la separación del cuerpo de la posición de equilibrio. Su unidad de medidas en el Sistema Internacional es el metro (m

Decimos que un cuerpo oscila o vibra cuando se mueve de forma periódica en torno a una posición de equilibrio debido al efecto de fuerzas restauradoras.

Periodo (T): El tiempo que tarda de cumplirse una oscilación completa. Su unidad de medida en el Sistema Internacional es el segundo (s)

Se describe mediante una función sinusoidal (seno o coseno indistintamente)

x=A⋅cos(ω⋅t+φ0) x=A⋅sin(ω⋅t+φ0)

Periódico: El movimiento se repite cada cierto tiempo denominado periodo (T). Es decir, el cuerpo vuelve a tener las mismas magnitudes cinemáticas y dinámicas cada T segundos

Frecuencia (f): Se trata del número de veces que se repite una oscilación en un segundo. Su unidad de medida en el Sistema Internacional es el hertzio (Hz)

Fuerza elastica o restauradora

Su módulo se puede obtener por medio de la siguiente expresión: Fe=k⋅x
Su sentido es contrario a la deformación que sufre el muelle.
Su dirección sigue el eje longitudinal del muelle.
Según el principio de acción reacción o tercera ley de Newton, en cada interacción existen dos fuerzas. Esto implica que si ejercemos una fuerza sobre un muelle, este último ejercerá también sobre nosotros otra fuerza de igual dirección y módulo aunque de sentido contrario. Dicha fuerza, recibe el nombre de fuerza elástica o restauradora.
La fuerza elástica es la fuerza que ejerce un muelle que no ha superado su límite de elasticidad y sufre una fuerza que lo deforma temporalmente. F→e=−k⋅x→

Leyes de kepler

Tercera Ley
La tercera ley, también conocida como armónica o de los periodos, relaciona los periodos de los planetas, es decir, lo que tardan en completar una vuelta alrededor del Sol, con sus radios medios.

T : Periodo del planeta. Su unidad de medida en el Sistema Internacional es el segundo ( s ) k : Constante de proporcionalidad. Su unidad de medida en el Sistema Internacional es el segundo al cuadrado partido metro cúbico ( s2/m3 ) r : Distancia media al Sol. Por las propiedades de la elipse se cumple que su valor coincide con el del semieje mayor de la elipse, a. Su unidad de medida en el Sistema Internacional es el metro ( m )

Para un planeta dado, el cuadrado de su periodo orbital es proporcional al cubo de su distancia media al Sol. Esto es, T2=k⋅r3

Segunda Ley
La recta que une el planeta con el Sol barre áreas iguales en tiempos iguales.

Suponiendo que el tiempo que se tarda en recorrer un espacio S1, S2 y S3 es el mismo, las áreas A1, A2 y A3 también serán iguales. Esto se debe a que a medida que disminuye la distancia al Sol, la velocidad aumenta (v1 < v2 < v3)

Primera Ley
Los planetas giran alrededor del Sol siguiendo una trayectoria elíptica. El Sol se sitúa en uno de los focos de la elipse.

La excentricidad e de una elipse es una medida de lo alejado que se encuentran los focos del centro. Su valor viene dado por: e=1−b2a2−−−−−−√

Ley de Gravitacion Universal

La ley de la gravitación universal, o simplemente, ley de la gravedad, establece la fuerza con la que se atraen dos cuerpos por el simple hecho de tener masa.
La fuerza con que se atraen dos objetos es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que los separa”.
Para formular esta ley, Newton dedujo que la fuerza con que dos masas se atraen es proporcional al producto de sus masas dividido por la distancia que las separa al cuadrado. Estas deducciones son el resultado de la comprobación empírica mediante la observación
Fuerza de la gravedad
Dos cuerpos se atraen con una fuerza directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que las separa, y está dirigida según la recta que une los cuerpos.

F = | (G . m1 . m2) / r² | . r*

• r* es el vector unidad que indica la dirección de la fuerza.

• r la distancia que los separa

m2 es la masa de otro de los cuerpos

• m1 es la masa de uno de los cuerpos

• G es la constante de gravitación universal ( 6,673484.10-11 N.m2/kg2)

• F es la fuerza de atracción entre dos masas

Un movimiento periódico es el tipo de evolución temporal que presenta un sistema cuyo estado se repite exactamente a intervalos regulares de tiempo. El tiempo mínimo T necesario para que el estado del sistema se repita se llama período.

M.A.S en sistema

Resorte
Esta formado por un cuerpo elástico en donde se acopla una masa, a la cual se le pueden aplicar fuerzas que deformen la contextura del cuerpo elástico, en el que actúa una constante de proporcionalidad del resorte.

Ley de hooke

Esta ley establece que el límite de la tensión elástica de un cuerpo es directamente proporcional a la fuerza

Pendulo simple
Un péndulo simple se comporta como un oscilador armónico cuando oscila con amplitudes pequeñas. La fuerza restauradora es la componente tangencial del peso, de valor Pt, y la aceleración del péndulo es proporcional al desplazamiento pero de sentido contrario

El periodo del péndulo simple, para oscilaciones de poca amplitud, viene determinado por la longitud del mismo y la gravedad.

El periodo del péndulo simple es el tiempo que tarda el péndulo en volver a pasar por un punto en el mismo sentido. También se define como el tiempo que tarda en hacerse una oscilación completa. Su valor viene determinado por: T=2⋅π⋅lg−−√

• g: Gravedad. Su unidad de medida en el Sistema Internacional es el metro por segundo al cuadrado ( m/s2 )

• T: Periodo del péndulo. Su unidad de medida en el Sistema Internacional es el segundo ( s )

No influye la masa del cuerpo que oscila ni la amplitud de la oscilación.

, con expresión: a=−gl⋅x

• x: Separación x de la vertical de equilibrio del péndulo. Su unidad de medida en el Sistema Internacional es el metro ( m )

• l: Longitud del péndulo. Su unidad de medida en el Sistema Internacional es el metro ( m )

• g: Aceleración de la gravedad. Su valor es 9.8 m/s2

• a: Aceleración del péndulo. Depende de la distancia a la posición de equilibrio x. Su unidad de medida en el Sistema Internacional es el metro por segundo al cuadrado ( m/s2

Un péndulo simple es una masa puntual m suspendida verticalmente mediante una cuerda o hilo inextensible de masa despreciable y longitud

Fuerza centripeta

Cuando un cuerpo describe una trayectoria curvilínea, el vector velocidad debe cambiar de dirección y sentido. La aceleración centrípeta es la encargada de ello. Pues bien, la fuerza centrípeta es la responsable de dotar a un cuerpo con dicha aceleración.
La fuerza de tensión sobre la cuerda de una pelota atada que da vueltas y la fuerza gravitacional que mantiene a un satélite en órbita, son ejemplos de fuerzas centrípetas
la fuerza centrípeta no es una fuerza fundamental, sino solo una etiqueta que le damos a la fuerza neta que ocasiona que un objeto se mueva en una trayectoria circular.
La fuerza centrípeta es la responsable de dotar al cuerpo con aceleración normal. Su valor viene dado por:F→n=m⋅a→n=m⋅v2ρ⋅u→n

m: Masa del cuerpo. Su unidad de medida en el Sistema Internacional (S.I.) es el kilogramo (kg)

Su sentido, al igual que el de la aceleración centrípeta, apunta hacia el centro de curvatura. Su unidad de medida en el Sistema Internacional (S.I.) es el newton (N)

: F→n : Es la fuerza centrípeta. Se suele usar el subíndice n por que su dirección es normal a la trayectoria y de esta manera se la diferencia de la fuerza centrífuga

a→n : Aceleración normal o centrípeta. Su unidad de medida en el Sistema Internacional (S.I.) es el metro por segundo al cuadrado (m/s2) y su valor viene dado por an=v2/ρ siendo v la velocidad del cuerpo en ese punto ρ y el radio de curvatura

Fuerza Centrifuga

Formula
Esta fuerza se mide en unidades de velocidad angular, que se representa con la letra w. por lo general, se asocia a partículas de masa en movimiento.
Ac= V2 / R, siendo Ac la aceleración centrípeta, V la velocidad tangencial y R el radio del giro
La fuerza centrífuga es una fuerza de inercia o pseudofuerza (fuerza no real), que se utiliza para explicar la existencia de fuerza centrípeta en movimientos circulares sobre sistemas de referencia no inerciales.
En un marco de referencia que gira alrededor de un eje a través de su origen, todos los objetos, independientemente de su estado de movimiento, parecen estar bajo la influencia de una fuerza radial (desde el eje de rotación) hacia afuera que es proporcional a su masa, a la distancia desde el eje de rotación del marco y al cuadrado de la velocidad angular del marco. Esta es la fuerza centrífuga.
Se aleja de un eje que es paralelo al eje de rotación y pasa por el origen del sistema de coordenadas. Si el eje de rotación pasa por el origen del sistema de coordenadas, la fuerza centrífuga se dirige radialmente hacia afuera desde ese eje.

Movimiento Circular Uniforme M.C.U

El movimiento circular uniforme (m.c.u.) es un movimiento de trayectoria circular en el que la velocidad angular es constante. Esto implica que describe ángulos iguales en tiempos iguales
Elementos

Posicion

Periodo

Frecuencia

Aceleracion centripeta

Eje

Radio

Aceleracion tangencial

Velocidad Tangencial

Aceleracion Angular

Velocidad Angular

Se dice que un objeto que se mueve en una trayectoria circular con rapidez constante experimenta un movimiento circular uniforme.
En él, el vector velocidad no cambia de módulo pero sí de dirección (es tangente en cada punto a la trayectoria). Esto quiere decir que no tiene aceleración tangencial ni aceleración angular, aunque sí aceleración normal.
Caracteristicas

Existe un periodo (T), que es el tiempo que el cuerpo emplea en dar una vuelta completa

La velocidad angular es constante (ω = cte)

Tanto la aceleración angular (α) como la aceleración tangencial (at) son nulas, ya que la rapidez o celeridad (módulo del vector velocidad) es constante

El vector velocidad es tangente en cada punto a la trayectoria y su sentido es el del movimiento. Esto implica que el movimiento cuenta con aceleración normal