Kategóriák: Minden - machine - prediction - vegetation - learning

a Muhamad Yusup 1 éve

123

Analisa Citra satelit dan Machine Learning untuk Prediksi Abrasi Pantai

The document highlights the use of satellite imagery and machine learning to predict coastal abrasion and assess related environmental risks. Indonesia, with its extensive coastline, faces significant challenges from coastal abrasion.

Analisa Citra satelit dan Machine Learning untuk Prediksi Abrasi Pantai

Analisa Citra satelit dan Machine Learning untuk Prediksi Abrasi Pantai

Metode

Research Location
Pantai Utara Tangerang
Comparison Data Classification Using ML methods
MARS (Multivariate Adaptive Regression Splines Algorithms)
K-NN
CART (Classification and Regression Trees Aplines Algorithms)
Random Forest

Testing Results of Accuracy and Validation

MNDWI Prediction Abration
NDVI and MSAVI Prediction
MPE
ME
MAPE
MSE
RMSE

Pendahuluan

Tingkat keparahan abrasi pantai
Kondisi abrasi pantai
Indonesia sebagai negara kepulauan memiliki potensi terhadap abrasi pantai

Dataset

Radio Metric Correction
MSAVI
Vegetasi (NDVI)
Kerapatan RTH (SAVI)
MNDWI
VHI
Satelite Imagery Data
Satelit Landsat 8 OLI/TIRS memiliki sensor Onboard Operational Land Imager (OLI)

Ekstraksi Data dari Citra Landat 8 OLI

Band 9

Band 8

Band 7

Band 6

Band 5

Band 4

Band 3

Band 2

Band 1

Data Preprocessing
www.earthexplorer.usgs.gov

Studi Literatur

Compare and Contrast
Conference Publications
National Journal Publications
MANGROVE MONITORING USING NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI): CASE STUDY IN NORTH HALMAHERA, INDONESIA
Perubahan Konversi Lahan Menggunakan NDVI, EVI, SAVI dan PCA pada Citra Landsat 8 (Studi Kasus : Kota Salatiga)
Tsunami Vulnerability and Risk Assessment Using Machine Learning and Landsat 8
International Journal Publications
Drought Analysis and Forecast Using Landsat-8 Sattelite Imagery, Standardized Precipitation Index and Time Series
Computer model for tsunami vulnerability using sentinel 2A and SRTM images optimized by machine learning