Kategóriák: Minden - espacio - combinación - vectores - lineal

a ILVER CIFUENTES 3 éve

89

Independencia lineal de vectores

En el estudio de álgebra lineal, un concepto fundamental es la independencia lineal de vectores. Un conjunto de vectores se considera linealmente independiente si ninguno de ellos puede expresarse como una combinación lineal de los otros.

Independencia lineal de vectores

ALGEBRA LINEAL

Independencia lineal de vectores

En otro caso si la solución a1 = 0 (la solución trivial); entonces, los vectores son linealmente independientes.

El conjunto de vectores s=(v1,v2…….vn ) es linealmente independiente si en la ecuación: a1v1+a2v2+a3v3+....anvn=0

Los vectores linealmente independientes en el plano tienen distintas direcciones y sus componentes no son proporcionales.

Bases de un espacio vectorial

base canónica
Base ortonormal
Base ortogonal

Ejemplo: Mostrar que el conjunto s = {1,x,x2,x3} de p3 es un conjunto de vectores linealmente independiente:

Solución Ahora se escribe la ecuación a1*1+ a2 + x + a3*x2 + a4*x3 =0 Si ai= 0 ∀i→ son los linealmente independiente. Si ai ≠ 0 para alguna i → son linealmente independiente. La ecuación anterior debe ser válida para todas x∈R; así, generando las ecuaciones siguientes Para x = 0: a1*1= 0 → a1 = 0 Para x = 1: a2 + a3 + a4 = 0 Para x = -1: - a2 + a3 – a4 = 0 Para x = 2: 2 a2 + 4 a3 + 8 a4 = 0 Resolviendo el sistema homogéneo anterior por la regla de Cramer, encontramos que: Matriz |A|=|■(1&1&1@-1&1&-1@2&4&8)|=12≠0 → Solución única: a1 = a2 = a3 = a4 = 0 Por lo tanto, los vectores 1, x, x2, x3 son linealmente independientes.

En álgebra lineal, un conjunto de vectores es linealmente independiente si ninguno de ellos puede ser escrito con una combinación lineal de los restantes.

Combinación lineal de vectores Es importante recordar que una combinación lineal de dos o más vectores es el vector que se obtiene al sumar esos vectores multiplicados por escaleres.