Categorieën: Alle - познание - факты - элементы - наука

door Oleg Durandin 11 jaren geleden

444

Олег Дурандин

Научное познание представляет собой развивающуюся систему с множеством взаимосвязанных элементов. Важную роль в этом процессе играют математические и логические науки, а также научные факты и их классификации.

Олег Дурандин

Особенности научного познания. Уровни, формы и методы научного познания.

Уровни, формы и методы научного познания

Научное познание есть процесс, т.е. целостная развивающаяся система довольно сложной структуры, которая выражает собой единство устойчивых взаимосвязей между элементами данной системы. Структура научного познания может быть представлена в различных срезах и соответственно в совокупности своих специфических элементов.

Рассматривая основную структуру научного знания, академик В.И. Вернадский отмечал, что "основной, неоспоримый, вечный остов науки (её твердое ядро) включает в себя следующие главные элементы:

Математические науки во всем их объеме. Логические науки почти всецело. Научные факты в их системе, классификации и сделанные из них эмпирические обобщения - научный аппарат, взятый в целом.

Все эти стороны научного знания - единой науки - находятся в бурном развитии, и область, ими охватываемая, все увеличивается". При этом, согласно Вернадскому, во-первых, новые науки всецело проникнуты этими элементами и создаются "в их всеоружии"; во-вторых, научный аппарат фактов и обобщений в результате научной работы растет непрерывно в геометрической прогрессии. В-третьих, живой, динамичный процесс такого бытия науки, связывающий прошлое с настоящим, стихийно отражается в среде человеческой жизни, является все растущей геологической силой, превращающей биосферу в ноосферу - сферу разума.

Кроме того, в структуре всякого научного знания существуют элементы, не укладывающиеся в традиционное понятие научности: философские, религиозные представления; психологические стереотипы, интересы и потребности; интеллектуальные и сенсорные навыки, не поддающиеся вербализации и рефлексии; противоречия и парадоксы; личные пристрастия и заблуждения. Имея в виду подобные элементы, Вернадский писал, что "есть одно коренное явление, которое определяет научную мысль и отличает научные результаты и научные заключения ясно и просто от утверждений философии и религии, - это общеобязательность и бесспорность правильно сделанных научных выводов, научных утверждений, понятий и заключений".

Как развивающаяся система знания, наука включает в себя два основных уровня - эмпирический и теоретический. Им соответствуют два взаимосвязанных, но в то же время специфических вида познавательной деятельности - эмпирическое (опытное) и теоретическое (рациональное) исследования - две основополагающие формы научного познания, а также структурные компоненты и уровни научного знания. Оба эти вида исследования органически взаимосвязаны и предполагают друг друга в целостной структуре научного познания.

Теоретический и эмпирический уровни научного знания при всем своем различии тесно связаны друг с другом. Эмпирическое исследование, выявляя новые данные наблюдения и эксперимента, стимулирует развитие теоретического исследования, ставит перед ним новые задачи. Теоретическое исследование, развивая и конкретизируя теоретическое содержание науки, открывает новые перспективы объяснения и предвидения фактов, ориентирует и направляет эмпирическое исследование. Наука как целостная динамическая система знания может успешно развиваться, только обогащаясь новыми эмпирическими данными, обобщая их в системе теоретических средств, форм и методов познания. В определенных точках развития науки эмпирическое переходит в теоретическое, и наоборот. Недопустимо абсолютизировать один из этих уровней в ущерб другому.

Производственно-технический уровень

Производственно-техническая сторона проявляет себя как непосредственная производственная сила общества, прокладывая путь развитию техники, но это уже выходит за рамки собственно научных методов, так как носит прикладной характер.

Так, эмпирическое, экспериментальное исследование предполагает целую систему экспериментальной и наблюдательной техники (устройств, в том числе вычислительных приборов, измерительных установок и инструментов), с помощью которой устанавливаются новые факты. Теоретическое исследование предполагает работу ученых, направленную на объяснение фактов (предположительное - с помощью гипотез, проверенное и доказанное - с помощью теорий и законов науки), на образование понятий, обобщающих опытные данные. То и другое вместе осуществляет проверку познанного на практике. В основе методов естествознания лежит единство его эмпирической и теоретической сторон. Они взаимосвязаны и обусловливают друг друга. Их разрыв, или преимущественное развитие одной за счет другой, закрывает путь к правильному познанию природы - теория становится беспредметной, опыт - слепым.

Эмпирический уровень познания

Эмпирический уровень познания

Эмпирическое исследование направлено непосредственно на объект и опирается на данные наблюдения и эксперимента. На этом уровне преобладает чувственное познание как живое созерцание. Здесь присутствуют рациональный момент и его формы (понятия, суждения и т.п.), но они имеют подчиненное положение. Поэтому на эмпирическом уровне исследуемый объект отражается преимущественно со стороны своих внешних связей и проявлений, доступных живому созерцанию. Помимо наблюдения и эксперимента в эмпирическом исследовании применяются такие средства, как описание, сравнение, измерение, анализ, индукция. Важнейшим элементом эмпирического исследования и формой научного знания является факт.

Моделирование

Моделирование - метод научного познания, основанный на изучении каких- либо объектов посредством их моделей. Появление этого метода вызвано тем, что иногда изучаемый объект или явление оказываются недоступными для прямого вмешательства познающего субъекта или такое вмешательство по ряду причин является нецелесообразным. Моделирование предполагает перенос исследовательской деятельности на другой объект, выступающий в роли заместителя интересующего нас объекта или явления. Объект-заместитель называют моделью, а объект исследования - оригиналом, или прототипом. При этом модель выступает как такой заместитель прототипа, который позволяет получить о последнем определенное знание.

Описание

описание — фиксирование данных наблюдения или эксперимента с помощью определенных систем обозначений;

Измерение

измерение — определение основных характеристик объектов с по¬

мощью соответствующих измерительных приборов.

Экспермент

Эксперимент - метод познания, при помощи которого явления действительности исследуются в контролируемых и управляемых условиях. Он отличается от наблюдения вмешательством в исследуемый объект, то есть активностью по отношению к нему. Проводя эксперимент, исследователь не ограничивается пассивным наблюдением явлений, а сознательно вмешивается в естественный ход их протекания путем непосредственного воздействия на изучаемый процесс или изменения условий, в которых проходит этот процесс.

Наблюдение

наблюдение — целенаправленное и организованное восприятие внеш¬него мира, доставляющее первичный материал для научного иссле¬дования;

Научный факт

Факт (от лат. factum - сделанное, свершившееся): а) синоним понятия "истина", реальное событие, результат - в противоположность вымышленному; б) особого рода предложения, фиксирующие эмпирическое знание, т.е. полученное в ходе наблюдений и экспериментов. Факт становится научным, когда он включен в логическую структуру конкретной системы научного знания. Как отмечал Н. Бор, ни один опытный факт не может быть сформулирован помимо некоторой системы понятий. В современной методологии науки существуют две полярные точки зрения в понимании природы факта - фактуализм, который подчеркивает автономность и независимость фактов по отношению к различным теориям, и теоретизм, напротив, утверждающий, что факты полностью зависят от теории и при смене теорий происходит изменение всего фактуального базиса науки. Верное решение проблемы состоит в признании того, что научный факт, обладая теоретической нагрузкой, относительно независим от теории, поскольку в своей основе обусловлен материальной действительностью. В научном познании совокупность фактов образует эмпирическую основу для выдвижения гипотез и создания теорий. Задачей научной теории является описание фактов, их объяснение, а также предсказание ранее неизвестных. Факты играют большую роль в проверке, подтверждении и опровержении теорий: соответствие фактам - одно из существенных требований, предъявляемых к научным теориям. Расхождение теории с фактом рассматривается как существенный недостаток теоретической системы знания. Вместе с тем, если теория противоречит одному или нескольким отдельным фактам, нет оснований считать её опровергнутой, так как подобное противоречие может быть устранено в ходе развития теории или усовершенствования экспериментальной техники.

Методы

Получение и обоснование объективно-истинного знания в науке происходит при помощи научных методов.

Метод (от греч. metodos - путь исследования или познания) - совокупность правил, приемов и операций практического и теоретического освоения действительности. Основная функция метода в научном знании - внутренняя организация и регулирование процесса познания того или иного объекта.

Методология определяется как система методов и как учение об этой системе, общая теория метода.

Современная система методов науки столь же разнообразна, как и сама наука. Содержание изучаемых наукой объектов служит критерием для различия методов естествознания и методов социально-гуманитарных наук. В свою очередь методы естественных наук подразделяют на методы изучения неживой природы и методы изучения живой природы. Выделяют также качественные и количественные методы, однозначно детерминистские и вероятностные, методы непосредственного и опосредованного познания, оригинальные и производные и т.д.

Характер метода определяется многими факторами: предметом исследования, степенью общности поставленных задач, накопленным опытом, уровнем развития научного знания и т.д. Методы, подходящие для одной области научного знания, оказываются непригодными для достижения целей в других областях. Методы, использовавшиеся на этапе становления научной дисциплины, уступают место более сложным и совершенным методам на последующей ступени её развития. В то же время многие выдающиеся достижения явились следствием переноса методов, хорошо зарекомендовавших себя в одних науках, в другие отрасли научного знания. Например, в биологии успешно применяются методы физики, химии, общей теории систем. Обобщенные характеристики методов, выработанных в термодинамике, химии, биологии, дали толчок к возникновению синергетики. В самых разнообразных науках оправдали себя математические методы.

Таким образом, на основе применяемых методов происходят противоположные процессы дифференциации и интеграции наук.

В теории науки и методологии научного познания разработаны различные классификации методов. Так, в типологии научных методов, предложенной В.А. Канке, выделены:

индуктивный метод, который регламентирует перенос знаний с известных объектов на неизвестные и тесно сопряжен с проблематикой научных открытий;

гипотетико-дедуктивный метод, определяющий правила научного объяснения в естествознании и основанный на определении соответствия научных понятий реальной ситуации;

аксиоматический и конструктивистский методы, определяющие правила логических и математических рассуждений;

прагматический метод, применяемый преимущественно в социально-гуманитарном знании метод понимания (интерпретации) явлений, основанный на установлении ценностного отношения между исследователем и миром культуры.

Различают также методы:

• общие - методы, которые применяются в человеческом познании вообще,

- анализ,

- синтез,

- абстрагирование,

- сравнение,

- индукция,

- дедукция,

- аналогия

- и др.;

• специфические - те, которыми пользуется наука:

- научное наблюдение,

- эксперимент,

- идеализация,

- формализация,

- аксиоматизация,

- восхождение от абстрактного к конкретному

- и т.д.;

• практические - применяемые на предметно-чувственном уровне научного познания:

- наблюдение,

- измерение,

- практический эксперимент;

• логические, являющиеся результатом обобщения много раз повторяющихся действий:

- доказательство,

- опровержение,

- подтверждение,

- объяснение,

- выведение следствий,

- оправдание.

Одновременно наблюдение, измерение, практический эксперимент относятся к эмпирическим методам, как и сопровождающие их доказательство или выведение следствий. Такие методы, как идеализация, мысленный эксперимент, восхождение от абстрактного к конкретному, являются теоретическими. Существуют методы, приспособленные преимущественно для обоснования знаний (эксперимент, доказательство, объяснение, интерпретация), другие направлены на открытие (наблюдение, индуктивное обобщение, аналогия, мысленный эксперимент).

В целом методологические положения и принципы составляют инструментальную, технологическую основу современного научного знания.

Теоретический уровень познания

Теоретический уровень познания

Теоретический уровень научного познания характеризуется преобладанием рационального момента - понятий, теорий, законов и других форм и «мыслительных операций». Отсутствие непосредственного практического взаимодействия с объектами обуславливает ту особенность, что объект на данном уровне научного познания может изучаться только опосредованно, в мысленном эксперименте, но не в реальном. Однако живое созерцание здесь не устраняется, а становится подчиненным (но очень важным) аспектом познавательного процесса.

На данном уровне происходит раскрытие наиболее глубоких существенных сторон, связей, закономерностей, присущих изучаемым объектам, явлениям путем обработки данных эмпирического знания. Эта обработка осуществляется с помощью систем абстракций «высшего порядка» - таких как понятия, умозаключения, законы, категории, принципы и др. Однако «на теоретическом уровне мы не найдем фиксации или сокращенной сводки эмпирических данных; теоретическое мышление нельзя свести к суммированию эмпирически данного материала. Получается, что теория вырастает не из эмпирии, но как бы рядом с ней, а точнее, над ней и в связи с ней» Лешкевич Т.Г. «Философия науки: традиции и новации» М-2001 стр.28.

Теоретический уровень - более высокая ступень в научном познании. «Теоретический уровень познания направлен на формирование теоретических законов, которые отвечают требованиям всеобщности и необходимости, т.е. действуют везде и всегда» Там же стр.29. Результатами теоретического познания становятся гипотезы, теории, законы.

Теория

Теория является наиболее развитой и сложной формой научного знания. Другие формы научного знания - законы науки, классификации, типологии, первичные объяснительные схемы - генетически могут предшествовать собственно теории, составляя базу ее формирования. В то же время они нередко сосуществуют с теорией, взаимодействуя с ней в системе науки, и даже входят в теорию в качестве её элементов.

Специфика теории по сравнению с другими формами научного знания заключается в том, что она дает целостное представление о закономерностях и существенных связях определенной области действительности - объекта данной теории. Примерами научных теорий являются классическая механика Ньютона, эволюционная теория Дарвина, теория относительности Эйнштейна. Любая научная теория, по мнению Эйнштейна, должна отвечать следующим критериям: не противоречить данным опыта; быть проверяемой на имеющемся опытном материале; отличаться естественностью, логической простотой; содержать наиболее определенные положения; отличаться изяществом и красотой, гармоничностью; иметь широкую область применения; указывать путь создания новой, более общей теории, в рамках которой она сама остается предельным случаем.

По своему строению теория представляет собой внутренне дифференцированную, но целостную систему знания, которую характеризуют логическая зависимость одних элементов от других, выводимость содержания теории из некоторой совокупности утверждений и понятий - исходного базиса теории - по определенным логико-методологическим правилам.

абстрагирование

абстрагирование — отвлечение от неких несущественных в данном контексте свойств и отношений изучаемого явления (особый вид абстрагирования — идеализация);

мысленный эксперимент

мысленный эксперимент — оперирование идеализированным объек¬том;

формализация

формализация — отображение результатов мышления в точных понятиях или утверждениях;

аксиоматизация

аксиоматизация — построение теорий на основе неких аксиом (ут-верждений, не требующих доказательства своей истинности);

Аналогия

Аналогия - метод познания, при котором происходит перенос знания, полученного в ходе рассмотрения какого-либо одного объекта, на другой, менее изученный и в данный момент изучаемый. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, что позволяет получить вполне достоверные знания об изучаемом предмете.

Применение метода аналогии в научном познании требует определенной осторожности. Здесь чрезвычайно важно четко выявить условия, при которых он работает наиболее эффективно. Однако в тех случаях, когда можно разработать систему четко сформулированных правил переноса знаний с модели на прототип, результаты и выводы по методу аналогии приобретают доказательную силу

Анализ

Анализ - метод научного познания, в основу которого положена процедура мысленного или реального расчленения предмета на составляющие его части. Расчленение имеет целью переход от изучения целого к изучению его частей и осуществляется путем абстрагирования от связи частей друг с другом. Анализ - органичная составная часть всякого научного исследования, являющаяся обычно его первой стадией, когда исследователь переходит от нерасчлененного описания изучаемого объекта к выявлению его строения, состава, а также его свойств и признаков.

Синтез

Синтез - это метод научного познания, в основу которого положена процедура соединения различных элементов предмета в единое целое, систему, без чего невозможно действительно научное познание этого предмета. Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единства знаний, полученных с помощью анализа. В синтезе происходит не просто объединение, а обобщение аналитически выделенных и изученных особенностей объекта. Положения, получаемые в результате синтеза, включаются в теорию объекта, которая, обогащаясь и уточняясь, определяет пути нового научного поиска.

метод математической гипотезы

Важнейшей разновидностью метода гипотезы является метод математической гипотезы, который характерен для наук с высокой степенью математизации. Описанный выше метод гипотезы является методом содержательной гипотезы. В его рамках сначала формулируются содержательные предположения о законах, а потом они получают соответствующее математическое выражение. В методе математической гипотезы мышление идет другим путем. Сначала для объяснения количественных зависимостей подбирается из смежных областей науки подходящее уравнение, что часто предполагает и его видоизменение, а затем этому уравнению пытаются дать содержательное истолкование.

Сфера применения метода математической гипотезы весьма ограничена. Он применим прежде всего в тех дисциплинах, где накоплен богатый арсенал математических средств в теоретическом исследовании. К таким дисциплинам прежде всего относится современная физика. Метод математической гипотезы был использован при открытии основных законов квантовой механики.

дедуктивный метод

Иногда метод гипотезы называют еще гипотетико-дедуктивным методом, имея в виду тот факт, что выдвижение гипотезы всегда сопровождается дедуктивным выведением из него эмпирически проверяемых следствий.

Дедукция - метод научного познания, который заключается в переходе от некоторых общих посылок к частным результатам-следствиям. Умозаключение по дедукции строится по следующей схеме; все предметы класса «А» обладают свойством «В»; предмет «а» относится к классу «А»; значит «а» обладает свойством «В». В целом дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок.

Индуктивный метод

При установлении степени эмпирической подтверждаемости гипотезы используются элементы индуктивной логики. Индукция используется и на стадии выдвижения догадки.

Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента.

Непосредственной основой индуктивного умозаключения является повторяемость признаков в ряду предметов определенного класса. Заключение по индукции представляет собой вывод об общих свойствах всех предметов, относящихся к данному классу, на основании наблюдения достаточно широкого множества единичных фактов. Обычно индуктивные обобщения рассматриваются как опытные истины, или эмпирические законы.

Гипотеза

Гипотеза — форма теоретического знания, содержащая предположение, сформулированное на основе ряда фактов, истинное значение которого неопределенно и нуждается в доказательстве. Гипотетическое знание носит вероятный, а не достоверный характер и требует проверки, обоснования.

В ходе доказательства гипотез:

а) одни из них становятся истинной теорией,

б) другие видоизменяются, уточняются и конкретизируются,

в) третьи отбрасываются, если проверка дает отрицательный результат.

Выдвижение новой гипотезы, как правило, опирается на результаты проверки старой, даже в том случае, если эти результаты были отрицательными.

По Менделееву, гипотеза является необходимым элементом естественнонаучного познания, включает в себя:

а) собирание, описание, систематизацию и изучение фактов;

б) составление гипотезы или предположения о причинной связи явлений;

в) опытную проверку логических следствий из гипотез;

г) превращение гипотез в достоверные теории или отбрасывание ранее принятой гипотезы и выдвижение новой.

Гипотеза может существовать лишь до тех пор, пока не противоречит достоверным фактам опыта, в противном случае она становится просто фикцией. Она проверяется соответствующими опытными фактами (экспериментом), получая характер истины. Гипотеза является плодотворной, если может привести к новым знаниям и новым методам познания.

Говоря об отношении гипотез к опыту, можно выделить три их типа:

а) гипотезы, возникающие непосредственно для объяснения опыта;

б) гипотезы, в формировании которых опыт играет определенную, но не исключительную роль;

в) гипотезы, которые возникают на основе обобщения только предшествующих концептуальных построений.

В современной методологии термин «гипотеза» употребляется в двух основных значениях:

а) форма теоретического знания, характеризующаяся проблематичностью и недостоверностью;

б) метод развития научного знания.

Решающей проверкой истинности гипотезы является в конечном счете практика во всех своих формах, но определенную роль в доказательстве или опровержении гипотетического знания играет и логический критерий истины. Проверенная и доказанная гипотеза переходит в разряд достоверных истин, становится научной теорией.

Говоря о гипотезах, нужно иметь в виду, что существуют различные их виды. Характер гипотез определяется во многом тем, по отношению к какому объекту они выдвигаются. Так, выделяют гипотезы общие, частные и рабочие.

Общие гипотезы — фундамент построения основ научного знания.

Частные — тоже обоснованные предположения о происхождении и свойства единичных фактов, конкретных событий и отдельных явлений.

Рабочие — предположение, выдвигаемое, как правило, на первых этапах исследования и служащее его направляющим ориентиром, отправным пунктом дальнейшего движения исследовательской мысли.

Общие гипотезы

Общие гипотезы — фундамент построения основ научного знания

Рабочие гипотезы

Рабочие — предположение, выдвигаемое, как правило, на первых этапах исследования и служащее его направляющим ориентиром, отправным пунктом дальнейшего движения исследовательской мысли.

Частные гипотезы

Частные — тоже обоснованные предположения о происхождении и свойства единичных фактов, конкретных событий и отдельных явлений.

Проблема

Проблема - форма теоретического знания, содержанием которой является то, что еще не познано человеком, но что нужно познать. Иначе говоря, это знание о незнании, вопрос, возникший в ходе познания и требующий ответа. Проблема не есть застывшая форма знания, а процесс, включающий два основных момента (этапа движения познания) - ее постановку и решение. Правильное выведение проблемного знания из предшествующих фактов и обобщений, умение верно поставить проблему - необходимая предпосылка ее успешного решения. "Формулировка проблемы часто более существенна, чем ее разрешение, которое может быть делом лишь математического или экспериментального искусства. Постановка новых вопросов, развитие новых возможностей, рассмотрение старых проблем под новым углом зрения требуют творческого воображения и отражают действительный успех в науке"1.

В. Гейзенберг отмечал, что при постановке и решении научных проблем необходимо следующее: а) определенная система понятий, с помощью которых исследователь будет фиксировать те или иные феномены;

б) система методов, избираемая с учетом целей исследования и характера решаемых проблем;

в) опора на научные традиции, поскольку, по мнению Гейзенберга, "в деле выбора проблемы традиция, ход исторического развития играют существенную роль", хотя, конечно, определенное значение имеют интересы и наклонности самого ученого.

Как считает К. Поппер, наука начинает не с наблюдений, а именно с проблем, и ее развитие есть переход от одних проблем к другим - от менее глубоких к более глубоким. Проблемы возникают, по его мнению, либо как следствие противоречия в отдельной теории, либо при столкновении двух различных теорий, либо в результате столкновения теории с наблюдениями.

Тем самым научная проблема выражается в наличии противоречивой ситуации (выступающей в виде противоположных позиций), которая требует соответствующего разрешения. Определяющее влияние на способ постановки и решения проблемы имеют, во-первых, характер мышления той эпохи, в которую формулируется проблема, и, во-вторых, уровень знания о тех объектах, которых касается возникшая проблема. Каждой исторической эпохе свойственны свои характерные формы проблемных ситуаций.

Особенности научного познания

Познание - это специфический вид деятельности человека, направленный на постижение окружающего мира и самого себя в этом мире. «Познание - это, обусловленный прежде всего общественно-исторической практикой, процесс приобретения и развития знания, его постоянное углубление, расширение, и совершенствование Агофонов В.П, Казаков Д.Ф., Рачинский Д.Д. «Философия» М-2000 МСХА стр.278.»

Человек постигает окружающий его мир, овладевает им различными способами, среди которых можно выделить два основных.

Первый (генетически исходный) - материально-технический -

Второй - духовный (идеальный),

духовный способ (идеальный)

духовный (идеальный), в рамках которого познавательные отношения субъекта и объекта - лишь одно из многих других. В свою очередь процесс познания и получаемые в нем знания в ходе исторического развития практики и самого познания все более дифференцируется и воплощается в различных своих формах.

Каждой форме общественного сознания: науке, философии, мифологии, политике, религии и т.д. соответствуют специфические формы познания. Обычно выделяют следующие из них: обыденное, игровое, мифологическое, художественно-образное, философское, религиозное, личностное, научное. Последние хотя и связаны, но не тождественны одна другой, каждая из них имеет свою специфику.

материально-технический способ

производство средств к жизни, труд, практика.

Основные особенности научного познания

Возрастающая роль науки в общественной жизни породила ее особый статус в современной культуре и новые аспекты ее взаимодействия с различными слоями общественного сознания. В этой связи остро ставится проблема особенностей научного познания и его соотношения с другими формами познавательной деятельности (искусством, обыденным сознанием и т. д.). Эта проблема, будучи философской по своему характеру, в то же время имеет большую практическую значимость. Осмысление специфики науки является необходимой предпосылкой внедрения научных методов в управление культурными процессами. Оно необходимо и для построения теории управления самой наукой в условиях ускоренного научно-технического прогресса, поскольку выяснение закономерностей научного познания требует анализа его социальной обусловленности и его взаимодействия с различными феноменами духовной и материальной культуры.

обоснованность результатов

Научному познанию присущи строгая доказательность, обоснованность полученных результатов, достоверность выводов. Вместе с тем здесь немало гипотез, догадок, предположений, вероятностных суждений и т. п. Вот почему тут важнейшее значение имеет логико-методологическая подготовка исследователей, их философская культура, постоянное совершенствование своего мышления, умение правильно применять его законы и принципы.

В современной методологии выделяют различные уровни критериев научности, относя к ним, кроме названных, такие как внутренняя системность знания, его формальная непротиворечивость, опытная проверяемость, воспроизводимость, открытость для критики, свобода от предвзятости, строгость и т. д. В других формах познания рассмотренные критерии могут иметь место (в разной мере), но там они не являются определяющими.

развитие технологий

В процессе научного познания применяются такие специфические материальные средства как приборы, инструменты, другое так называемое «научное оборудование», зачастую очень сложное и дорогостоящее (синхрофазотроны, радиотелескопы, ракетно - космическая техника и т. д.). Кроме того, для науки в большей мере, чем для других форм познания характерно использование для исследования своих объектов и самой себя таких идеальных (духовных) средств и методов, как современная логика, математические методы, диалектика, системный, гипотетико-дедуктивный и другие общенаучные приемы и методы.

Развитие научного познания

Научное познание в гносеологическом плане есть сложный противоречивый процесс воспроизводства знаний, образующих целостную развивающуюся систему понятий, теорий, гипотез, законов и других идеальных форм, закрепленных в языке - естественном или - что более характерно - искусственном (математическая символика, химические формулы и т.п.). Научное знание не просто фиксирует свои элементы, но непрерывно воспроизводит их на своей собственной основе, формирует их в соответствии со своими нормами и принципами. В развитии научного познания чередуются революционные периоды, так называемые научные революции, которые приводят к смене теорий и принципов, и эволюционные, спокойные периоды, на протяжении которых знания углубляются и детализируются. Процесс непрерывного самообновления наукой своего концептуального арсенала - важный показатель научности.

научное предвидение

Наука в большей мере, чем другие формы познания ориентирована на то, чтобы быть воплощенной в практике, быть «руководством к действию» по изменению окружающей действительности и управлению реальными процессами. Жизненный смысл научного изыскания может быть выражен формулой: «Знать, чтобы предвидеть, предвидеть, чтобы практически действовать» - не только в настоящем, но и в будущем. Весь прогресс научного знания связан с возрастанием силы и диапазона научного предвидения. Именно предвидение дает возможность контролировать процессы и управлять ими. Научное знание открывает возможность не только предвидения будущего, но и сознательного его формирования. «Ориентация науки на изучение объектов, которые могут быть включены в деятельность (либо актуально, либо потенциально, как возможные объекты ее будущего освоения), и их исследование как подчиняющихся объективным законам функционирования и развития составляет одну из важнейших особенностей научного познания. Эта особенность отличает его от других форм познавательной деятельности человека».

Существенной особенностью современной науки является то, что она стала такой силой, которая предопределяет практику. Из дочери производства наука превращается в его мать. Многие современные производственные процессы родились в научных лабораториях. Таким образом, современная наука не только обслуживает запросы производства, но и все чаще выступает в качестве предпосылки технической революции. Великие открытия за последние десятилетия в ведущих областях знания привели к научно-технической революции, охватившей все элементы процесса производства: всесторонняя автоматизация и механизация, освоение новых видов энергии, сырья и материалов, проникновение в микромир и в космос. В итоге сложились предпосылки для гигантского развития производительных сил общества.

Цель научного познания

Непосредственная цель и высшая ценность научного познания - объективная истина, постигаемая преимущественно рациональными средствами и методами, но, разумеется, не без участия живого созерцания. Отсюда характерная черта научного познания - объективность, устранение по возможности субъективистских моментов во многих случаях для реализации «чистоты» рассмотрения своего предмета. Ещё Эйнштейн писал: «То, что мы называем наукой, имеет своей исключительной задачей твердо установить то, что есть» Эйнштейновский сборник. М., 1967. стр. 23. Её задача - дать истинное отражение процессов, объективную картину того, что есть. Вместе с тем надо иметь в виду, что активность субъекта - важнейшее условие и предпосылка научного познания. Последнее неосуществимо без конструктивно-критического отношения к действительности, исключающего косность, догматизм, апологетику.

Основная задача научного знания

Основная задача научного знания - обнаружение объективных законов действительности - природных, социальных (общественных), законов самого познания, мышления и др. Отсюда ориентация исследования главным образом на общие, существенные свойства предмета, его необходимые характеристики и их выражение в системе абстракций. «Сущность научного познания заключается в достоверном обобщении фактов, в том, что за случайным оно находит необходимое, закономерное, за единичным - общее и на этой основе осуществляет предвидение различных явлений и событий» Голубинцев В.О., Данцев А.А., Любченко В.С. «Философия для технических вузов» Ростов н/Д -2001г

Научное познание стремиться вскрыть необходимые, объективные связи, которые фиксируются в качестве объективных законов. Если этого нет, то нет и науки, ибо само понятие научности предполагает открытие законов, углубление в сущность изучаемых явлений.

Мышление

Мышление - осуществляющийся в ходе практики активный процесс обобщенного и опосредованного отражения действительности, обеспечивающий раскрытие на основе чувственных данных ее закономерных связей и их выражение в системе абстракций (понятий, категорий и др.). Человеческое мышление осуществляется в теснейшей связи с речью, а его результаты фиксируются в языке как определенной знаковой системе, которая может быть естественной или искусственной (язык математики, формальной логики, химические формулы и т.п.).

Говоря о важнейшем значении мышления для научного познания, М. Борн подчеркивал, что "человеческий ум может проникать в тайны природы с помощью мышления вследствие гармонии между законами мышления и законами природы". Отсутствие такой гармонии, расхождение законов мышления с законами бытия закрывает путь к истине, ведет к заблуждению.

Мышление человека - не природное его свойство, а выработанная в ходе истории функция социального субъекта, общества в процессе своей предметной деятельности и общения, идеальная их форма. Поэтому мышление, его формы, принципы, категории, законы и их последовательность внутренне связаны с историей социальной жизни, обусловлены развитием труда, практики. Именно уровень и структура последней обусловливают в конечном итоге способ мышления той или иной эпохи, своеобразие логических "фигур" и связей на каждом из ее этапов. Вместе с развитием практики, ее усложнением и внутренней дифференциацией изменяется и мышление, проходя определенные уровни (этапы, состояния и т.п.).

Исходя их древней философской традиции, восходящей к античности, следует выделить два основных уровня мышления - рассудок и разум.

Процесс развития мышления включает в себя взаимосвязь и взаимопереход рассудка и разума. Наиболее характерной формой перехода первого во второй является выход за пределы сложившейся готовой системы знания, на основе выдвижения новых - диалектических по своей сути - фундаментальных идей. Переход разума в рассудок связан прежде всего с процедурой формализации и перевода в относительно устойчивое состояние тех систем знания, которые были получены на основе разума (диалектического мышления).

Разум

Разум - (диалектическое мышление) - высший уровень рационального познания, для которого прежде всего характерны творческое оперирование абстракциями и сознательное исследование их собственной природы (саморефлексия). Только на этом своем уровне мышление может постигнуть сущность вещей, их законы и противоречия, адекватно выразить логику вещей в логике понятий. Последние как и сами вещи берутся в их взаимосвязи, развитии, всесторонне и конкретно. Главная задача разума - объединение многообразного вплоть до синтеза противоположностей и выявления коренных причин и движущих сил изучаемых явлений. Логика разума - диалектика, представленная как учение о формировании и развитии знаний в единстве их содержания и формы.

Рассудок

Рассудок - исходный уровень мышления, на котором оперирование абстракциями происходит в пределах неизменной схемы, заданного шаблона, жесткого стандарта. Это способность последовательно и ясно рассуждать, правильно строить свои мысли, четко классифицировать, строго систематизировать факты. Здесь сознательно отвлекаются от развития, взаимосвязи вещей и выражающих их понятий, рассматривая их как нечто устойчивое, неизменное. Главная функция рассудка - расчленение и исчисление. Мышление в целом невозможно без рассудка, он необходим всегда, но его абсолютизация неизбежно ведет к метафизике. Рассудок - это обыденное повседневное житейское мышление или то, что часто называют здравым смыслом. Логика рассудка - формальная логика, которая изучает структуру высказываний и доказательств, обращая основное внимание на форму "готового" знания, а не на его содержание.

Исторический экскурс

Наука — важнейшая форма человеческого познания. Она оказывает все более зримое и существенное влияние на жизнь не только общества, но и отдельного человека. Наука выступает сегодня как главная сила экономического и социального развития мира. Вот почему философское видение мира органично включает в себя определенные представления о том, что такое наука, как она устроена, развивается, что она может дать, а что ей недоступно.

В период становления науки как особого социального института (это период кризиса феодализма, зарождения буржуазных общественных отношений и формирования капитализма, т. е. эпоха Возрождения и Новое время) ее влияние обнаруживалось прежде всего в сфере мировоззрения, где в течение всего этого времени шла острая и упорная борьба между теологией и наукой.

Дело в том, что в предшествовавшую эпоху Средневековья теология постепенно завоевала положение верховной инстанции, призванной обсуждать и решать коренные мировоззренческие проблемы, такие, как вопрос о строении мироздания и месте человека в нем, о смысле и высших ценностях жизни и т. п. К сфере же зарождающейся науки относили проблемы более частного и «земного» порядка.

Великое значение коперниковского переворота, начавшегося четыре с половиной столетия назад, состоит в том, что наука впервые оспорила у теологии ее право монопольно определять формирование мировоззрения. Именно это стало первым актом в процессе проникновения научного знания и научного мышления в структуру деятельности человека и общества; именно здесь обнаружились первые реальные признаки выхода науки в мировоззренческую проблематику, в мир ценностей и устремлений человека.

Должно было пройти немало времени, вобравшего в себя такие драматические эпизоды, как сожжение Дж. Бруно, отречение Г. Галилея, идейные конфликты в связи с учением Ч. Дарвина о происхождении видов, прежде чем наука смогла стать высшей инстанцией в вопросах первостепенной мировоззренческой значимости, касающихся структуры материи и строения Вселенной, возникновения и сущности жизни, происхождения человека и т. д. Еще больше времени потребовалось для того, чтобы предлагаемые наукой ответы на эти и другие вопросы стали элементами общего образования. Без этого научные представления не могли превратиться в одну из важнейших ценностей культуры. Одновременно с этим процессом возникновения и укрепления культурно-мировоззренческих функций науки само занятие наукой постепенно становилось в глазах общества самостоятельной и вполне достойной сферой человеческой деятельности. Происходило формирование науки как социального института в структуре общества.

Что касается функций науки как непосредственной производительной силы, то нам сегодня эти функции, пожалуй, представляются не только наиболее очевидными, но и первейшими, изначальными. И это понятно, если учитывать беспрецедентные масштабы и темпы современного научно-технического прогресса, результаты которого ощутимо проявляются во всех отраслях жизни и во всех сферах деятельности человека.

В период становления науки как социального института вызревали материальные предпосылки для осуществления такого синтеза, создавался необходимый для этого интеллектуальный климат, вырабатывался соответствующий строй мышления. Конечно, научное знание и тогда не было изолировано от быстро развивавшейся техники. Некоторые проблемы, возникавшие в ходе развития техники, становились предметом научного исследования и даже давали начало новым научным дисциплинам. Так было, например, с гидравликой, с термодинамикой. Тем не менее, наука первоначально мало что давала практической деятельности — промышленности, сельскому хозяйству, медицине. И дело было не только в недостаточном уровне развития науки, но прежде всего в том, что практическая деятельность, как правило, не умела, да и не испытывала потребности опираться на завоевания науки или хотя бы просто систематически учитывать их.

Со временем, однако, становилось очевидным, что сугубо эмпирическая основа практической деятельности слишком узка и ограниченна для того, чтобы обеспечить непрерывное развитие производительных сил, прогресс техники. И промышленники, и ученые начинали видеть в науке мощный катализатор процесса непрерывного совершенствования средств производственной деятельности. Осознание этого резко изменило отношение к науке и явилось существенной предпосылкой для ее решающего поворота в сторону практики, материального производства. И здесь, как и в культурно-мировоззренческой сфере, наука недолго ограничивалась подчиненной ролью и довольно быстро выявила свой потенциал революционизирующей силы, в корне меняющей облик и характер производства.

От башни из черепах к искривленному пространству.

Современное представление мира

D 1514 г. польский каноник Николай Коперник предложил другую модель мира. (Сначала, возможно из страха прослыть еретиком, Коперник распространял свою теорию анонимно.) Революционная идея Коперника состояла в том, что не все небесные тела должны вращаться вокруг Земли. Он утверждал, что Земля и планеты обращаются по круговым орбитам вокруг неподвижного Солнца, покоящегося в центре Солнечной системы. Подобно модели Птолемея, теория Коперника работала хорошо, но все же не полностью соответствовала наблюдениям. Ее относительная простота — в сравнении моделью Птолемея, — казалось бы, сулила быстрый успех. Однако прошло почти столетие, прежде чем ее приняли всерьез. Два астронома — немец Иоганн Кеплер и итальянец Галилео Галилей — открыто встали на сторону теории Коперника.

В 1609 г. Галилей начал наблюдать ночное небо при помощи изобретенного[ им телескопа. Посмотрев на Юпитер, он обнаружил, что эту планету сопровождают несколько маленьких спутников, обращающихся вокруг нее. Это указывало, что не все небесные тела обращаются вокруг Земли, как считали Аристотель и Птолемей. В то же самое время Кеплер усовершенствовал теорию Коперника, предположив, что планеты движутся не по окружностям, а по эллипсам. С учетом этой поправки предсказания теории неожиданно в точности совпали с наблюдениями. Открытия Галилея и Кеплера стали смертельными ударами для птолемеевской модели.

От башни из черепах к искривленному пространству. Древняя и современная «картины мира».

Мы понимаем, что живем в загадочном, ошеломляющем мире. Мы стремимся постичь смысл того, что видим вокруг себя, и задаемся вопросами: какова природа Вселенной, каково наше место в ней, откуда появилась она и мы, почему она такая, как есть?

Пытаясь ответить на вопросы, мы принимаем ту или иную «картину мира». И бесконечная башня из черепах, поддерживающих плоскую Землю, такая же картина, как и теория суперструн. И то и другое есть теории строения Вселенной, хотя последняя гораздо более математизирована и точна, чем первая. Им обеим недостает наглядных подтверждений: никто никогда не видел гигантской черепахи, на спине которой покоится Земля, но никто не видел и суперструн. Однако черепашью теорию не назовешь добротной научной концепцией, потому что она предсказывает, что люди могут свалиться с края света. Этот прогноз не согласуется с опытом, если только не окажется, что он объясняет предполагаемые исчезновения людей в Бермудском треугольнике!

Самые ранние попытки теоретического описания и объяснения Вселенной включали идею о том, что ход событий и природных явлений направляют духи, наделенные человеческими эмоциями и действующие по-человечески непредсказуемо. Эти духи населяли природные объекты, такие как реки и горы, а также небесные тела вроде Солнца и Луны. Их нужно было умиротворять и ублажать, чтобы почва плодоносила, а времена года сменяли друг друга. Со временем, однако, было замечено существование определенных закономерностей: Солнце всегда вставало на востоке и садилось на западе независимо от того, были принесены жертвы богу дневного светила или нет. Более того, Солнце, Луна и планеты двигались по небу строго определенными путями, которые удавалось довольно точно предсказать. Солнце и Луна все еще могли считаться богами, но эти боги повиновались строгим законам, очевидно никогда не позволяя себе отступлений, если не принимать в расчет таких историй, как предание об Иисусе Навине, остановившем Солнце.

Сначала эти правила и закономерности отмечались только при наблюдениях за звездным небом и в немногих других ситуациях. Однако по мере развития цивилизации, особенно в последние триста лет, стало обнаруживаться все больше и больше таких законов и правил.

В сущности, мы уже пересмотрели задачу науки: это открытие законов, которые позволят нам предсказывать события в границах, установленных принципом неопределенности. Однако остается вопрос: как или почему были выбраны эти законы и начальное состояние Вселенной?

Эйнштейн однажды спросил: «Обладал ли свободой Бог, когда создавал Вселенную?» Если верно предположение об отсутствии у Вселенной границ, то Бог не располагал свободой выбора начальных условий. Конечно, Он все еще был бы волен выбирать законы, которым подчиняется Вселенная. Но и это в действительности не назовешь большим выбором: возможно, лишь одна — или небольшое число — полных объединенных теорий, типа теории струн, являются непротиворечивыми и допускают существование столь сложных структур, как люди, способные исследовать законы Вселенной и задавать вопросы о природе Бога.

Однако, если мы все-таки создадим полную теорию, со временем ее основные принципы должны стать понятны каждому, а не только нескольким ученым. Тогда мы все — философы, ученые и обычные люди — сможем обсуждать вопрос, почему существуем мы сами и наша Вселенная. Если мы найдем ответ, это будет окончательным триумфом человеческого разума, ибо тогда нам откроется Божественный замысел.

Теория Аристотеля и Пталомея

Теория Аристотели и Пталомея

Было замечено, что среди тысяч видимых звезд, которые двигались все вместе, пять (не считая Луны) перемещались своим, особым манером. Иногда они отклонялись от обычного направления с востока на запад и пятились назад. Эти светила назвали планетами, что в переводе с греческого означает «блуждающий». Древние греки наблюдали только пять планет: Меркурий, Венеру, Марс, Юпитер и Сатурн, потому что только их можно увидеть невооруженным глазом. Сегодня мы знаем, почему планеты движутся по таким странным траекториям. Если звезды почти не перемещаются по отношению к Солнечной системе, планеты обращаются вокруг Солнца, поэтому их путь по ночному небу выглядит гораздо сложнее движения далеких звезд.

Аристотель считал, что Земля неподвижна, а Солнце, Луна, планеты и звезды вращаются вокруг нее по круговым орбитам. Он верил в это, полагая, в силу мистических причин, что Земля — центр Вселенной, а круговое движение — самое совершенное. Во втором веке нашей эры другой греческий ученый, Птолемей, развил эту идею, построив всеобъемлющую модель небесных сфер. Птолемей был увлеченным исследователем. «Когда я изучаю спирали движения звезд, — писал он, — я уже не касаюсь ногами земли».

В модели Птолемея Землю окружали восемь вращающихся сфер. Каждая следующая сфера больше предыдущей — подобно русским матрешкам. Земля помещается в центре. Что именно лежит за границей последней сферы, никогда не уточнялось, но это определенно было недоступно человеческому наблюдению. Так что самую дальнюю сферу считали своего рода границей, вместилищем Вселенной. Предполагалось, что звезды занимают на ней фиксированные места, так что при вращении этой сферы они движутся по небу все вместе, сохраняя взаиморасположение, — что мы и наблюдаем. На внутренних сферах размещаются планеты. В отличие от звезд, они не закреплены жестко, а движутся относительно своих сфер по небольшим окружностям, называемым эпициклами. Это вращение вкупе с вращением планетных сфер и делает движение планет относительно Земли таким сложным (рис. 2). Этим построением Птолемей сумел объяснить, почему наблюдаемые пути планет по звездному небу гораздо сложнее круговых.

Модель Птолемея позволяла с достаточной точностью предсказывать положения светил на небе. Но ради этого Птолемей вынужден был допустить, что в некоторые моменты Луна, следуя по своему пути, подходит к Земле вдвое ближе, чем в иное время. А это значит, что в такие моменты Луна должна казаться вдвое крупнее! Птолемей знал этот недостаток своей системы, и все же она получила широкое, хотя и не всеобщее признание. Христианская церковь сочла эту картину мира соответствующей Священному Писанию, поскольку она оставляла достаточно места для рая и ада за пределами сферы неподвижных звезд — немалое преимущество.

древнегреческая картина мира

РАЗВИТИЕ КАРТИНЫ МИРА

Хотя даже в эпоху Христофора Колумба многие полагали, что Земля плоская (и сегодня кое-кто все еще придерживается этого мнения), современная астрономия уходит корнями во времена древних греков. Около 340 г . до н. э. древнегреческий философ Аристотель написал сочинение «О небе», где привел веские аргументы в пользу того, что Земля скорее является сферой, а не плоской плитой.

Одним из аргументов стали затмения Луны. Аристотель понял, что их вызывает Земля, которая, проходя между Солнцем и Луной, отбрасывает тень на Луну. Аристотель заметил, что тень Земли всегда круглая. Так и должно быть, если Земля — сфера, а не плоский диск. Имей Земля форму диска, ее тень была бы круглой не всегда, но только в те моменты, когда Солнце оказывается точно над центром диска. В остальных случаях тень удлинялась бы, принимая форму эллипса (эллипс — это вытянутая окружность).

Свое убеждение в том, что Земля круглая, древние греки подкрепляли и другим доводом. Будь она плоской, идущее к нам судно сначала казалось бы крошечной, невыразительной точкой на горизонте. По мере его приближения проступали бы детали — паруса, корпус. Однако все происходит иначе. Когда судно появляется на горизонте, первое, что вы видите, — это паруса. Только потом вашему взгляду открывается корпус. То обстоятельство, что мачты, возвышающиеся над корпусом, первыми появляются из-за горизонта, свидетельствует о том, что Земля имеет форму шара

Древние греки много внимания уделяли наблюдениям за ночным небом. Ко времени Аристотеля вот уже несколько столетий велись записи, отмечающие перемещение небесных светил.

Было замечено, что среди тысяч видимых звезд, которые двигались все вместе, пять (не считая Луны) перемещались своим, особым манером. Иногда они отклонялись от обычного направления с востока на запад и пятились назад. Эти светила назвали планетами, что в переводе с греческого означает «блуждающий». Древние греки наблюдали только пять планет: Меркурий, Венеру, Марс, Юпитер и Сатурн, потому что только их можно увидеть невооруженным глазом. Сегодня мы знаем, почему планеты движутся по таким странным траекториям. Если звезды почти не перемещаются по отношению к Солнечной системе, планеты обращаются вокруг Солнца, поэтому их путь по ночному небу выглядит гораздо сложнее движения далеких звезд.

Зарождение научных знаний

Зарождение научных знаний

Человек добывал знания об окружающем его мире в суровой борьбе за существование. В этой борьбе обособились от животного мира его далекие предки, развились его руки и интеллект. От случайных и неосознанных применений палок и камней для защиты и добывания пищи он перешел к изготовлению орудий, сначала в виде грубо и примитивно обработанных кусков камня, затем ко все более совершенным каменным орудиям, к луку и стрелам, рыболовным снастям, охотничьим ловушкам — этим первым программирующим устройствам. Величайшим завоеванием человека было получение и использование огня. В этой занявшей тысячи и тысячи лет эволюции формировалось сознание человека, развивалась речь, накапливались знания и представления о мире, возникли первые антропоморфные объяснения окружающих явлений, остатки которых сохранились и в нашем языке. Как и у первобытного человека, у нас солнце «ходит», месяц «смотрит» и т. д.

Другого способа понять природу, как уподоблять ее себе, живому существу, наделить ее чувствами и сознанием, У первобытного человека не было. Из этого источника развились и научные знания, и религиозные представления.

В библейском мифе о сотворении мира, записанном уже в эпоху развитого рабовладельческого общества, очень ярко выражены эти антропоморфные представления о боге, который поступает подобно человеку-земледельцу; проводит мелиоративные работы (отделил воду от земли), зажигает огонь («да будет свет»), создает все окружающие вещи и после трудов отдыхает.

Наряду с этими фантастическими представлениями о природе человек обогащался реальными знаниями о небесных светилах, растениях и животных, о движении и силах, метеорологических явлениях и т. д. Накопленные знания и практические навыки, передаваясь от поколения к поколению, образовывали первоначальный фон будущей науки. По мере развития общества и общественного труда накапливались предпосылки для создания устойчивой цивилизации. Решающую роль здесь сыграло возникновение земледелия. Там, где сложились условия для получения устойчивых урожаев на одном и том же месте и из года в год, создавались поселения, города, а затем и государства.

Такие условия возникли в Северной Африке в долине Нила, ежегодные разливы которого оставляли на полях плодородный ил, в двуречье между реками Тигр и Евфрат, где уже в IV тысячелетии до н. э. стали складываться древнейшие рабовладельческие государства, ставшие колыбелью современной науки. Система орошаемого земледелия, добыча металла (меди) и его обработка, развитие техники и изготовление орудий создали предпосылки для возникновения сложного общественного организма с развитой экономикой. Общественные потребности привели к появлению письменности: иероглифов в Египтe, клинописи в Вавилонии, к возникновению астрономических и математических знаний.

Сохранившиеся до наших дней великие пирамиды Египта свидетельствуют о том, что уже в III тысячелетии до н. э. государство могло организовывать большие массы людей, вести учет материалов, рабочей силы, затраченного труда. Для этой цели необходимы были специальные люди, работники умственного труда. Хозяйственные записи в Египте вели писцы, которым принадлежит заслуга фиксации научных знаний своего времени. Известные памятники II тысячелетия: папирус Ринда, хранящийся в Британском музее, и Московский папирус—содержат решение различных задач, встречающихся в практике, математические вычисления, вычисления площадей и объемов. В Московском папирусе дана формула для вычисления объема усеченной пирамиды. Площадь круга египтяне вычислили, возводя в квадрат восемь девятых диаметра, что дает для к достаточно хорошее приближенное значение — 3,16.

Определение времени начала разлива Нила требовало тщательных астрономических наблюдений. Египтяне разработали календарь, состоявший из двенадцати месяцев по 30 дней и пяти дополнительных дней в году. Месяц был разделен на три десятидневки, сутки — на двадцать четыре часа, двенадцать дневных, двенадцать ночных. Поскольку продолжительность дня и ночи менялась со временем года, величина часа была не постоянной, а менялась со временем года.

Высокого уровня достигли вавилонская математика и астрономия. Вавилоняне знали теорему Пифагора, вычисляли квадраты и квадратные корни, кубы и кубичные корни, умели решать системы уравнений и квадратные уравнения. Им принадлежит также разделение эклиптики на двенадцать созвездий зодиака.

Следует подчеркнуть, что математика египтян и вавилонян носила практический характер и выросла из потребностей хозяйственной и строительной практики. По мнению историков математики, вавилонская математика находилась на более высоком научном уровне, чем египетская. Но в области геометрии египтяне ушли дальше вавилонян.

Астрономия была первой из естественных наук, с которой началось развитие естествознания, ф. Энгельс в «Диалектике природы» набросал схему развития естествознания, согласно которой сначала возникла астрономия из наблюдения смены дня и ночи, времен года и потому абсолютно необходимая для пастушеских и земледельческих народов. Для развития астрономии нужна была математика, а строительная практика стимулировала развитие механики.

Бесспорно, грандиозные сооружения древних государств (храмы, крепости, пирамиды, обелиски) требовали, по крайней мере, эмпирических знаний строительной механики и статики. При строительных работах находили применение простые машины: рычаги, катки, наклонные плоскости. Таким образом, практические потребности вызвали к жизни начатки научных знаний арифметики, геометрии, алгебры, астрономии, механики и других естественных наук.

Отметим в заключение, что значение начального периода в истории науки и культуры чрезвычайно велико Не случайно историки математики уделяют большое внимание египетской и вавилонской математике. Здесь зародились начатки математических знаний, и прежде всего сформировалась фундаментальная идея числа, и основные операции с числами. Здесь были заложены основы геометрии. Здесь человек впервые описал звездное небо, движения Солнца, Луны и планет, научился наблюдать небесные светила и создал основы измерения времени, заложил основы алфавитного письма.

Особенно велико было значение письменности — основы науки и культуры. Недаром Галилей в «Диалоге» воздал восторженную хвалу создателю письменности.