Kategorier: Alla - ciberseguridad - configuración - redes - bibliografía

av manuel diaz för 2 årar sedan

131

PROTOCOLOS EN CADA CAPA DEL CONJUNTO DE TCP/IP.

El documento trata sobre los protocolos utilizados en cada capa del conjunto TCP/IP, abordando aspectos esenciales para el desarrollo de redes. Se menciona la importancia de la configuración adecuada de equipos de red, destacando la dirección IP y el Protocolo de Configuración Dinámica de Host (

PROTOCOLOS  EN CADA CAPA DEL CONJUNTO DE TCP/IP.

PROTOCOLOS EN CADA CAPA DEL CONJUNTO DE TCP/IP.

DATOS DEL ALUMNO

ALUMNO:ALDACO DIAZ MANUEL DE JESUS NOMBRE DE LA MAESTRA: IDANIA SILVA IBARRA GRUPO:TDM16 MATERIA:DESARROLLO DE REDES UNIDAD:2 MATRICULA:22311869

PAGINAS DE CONSULTA

Internet Protocol Dirección MAC Red de área local Proveedor de servicios de Internet Dynamic Host Configuration Protocol Andreu, Joaquín (7 de octubre de 2011). Instalación de equipos de red. Configuración (Redes locales). Editex. ISBN 978-84-9003-062-2. Consultado el 31 de diciembre de 2019. «Acerca de las direcciones IP - Ayuda de Búsqueda web de Google». support.google.com. Consultado el 23 de febrero de 2017. García, Adolfo Arreola (11 de diciembre de 2019). Ciberseguridad: ¿Por qué es importante para todos?. Siglo XXI Editores México. ISBN 978-607-03-1041-6. Consultado el 31 de diciembre de 2019. «Dedicated IP Address Guide». Monday, July 13, 2020 RFC 760 RFC 791: Internet Protocol Specification. RFC 790: Assigned Numbers. ALONSO, Nuria OLIVA; Vvaa (1 de marzo de 2013). Redes de comunicaciones industriales. Editorial UNED. ISBN 9788436265491. Consultado el 11 de octubre de 2019. RFC 1519 Address Allocation for Private Internets, doi:10.17487/RFC1918, BCP 5. RFC 1918. Updated by RFC 6761. Address Allocation for Private Internets, doi:10.17487/RFC1918, BCP 5. RFC 1918. Updated by RFC 6761. Tanenbaum, Andrew S. (2003). «5». Redes de computadoras. Pearson Educación. pp. 436 - 445. ISBN 970-26-0162-2. Consultado el 24 de septiembre de 2014. Se listan algunas de las bibliotecas de comunicaciones existentes, que utilizan los protocolos TCP y UDP para distintos sistemas operativos. SolarSockets es una biblioteca para C++ Multiplataforma y Multithread, gratuita para proyectos libres.7 Fácil de usar y con varios ejemplos.8 SDL NET proporciona funciones y tipos de dato multiplataforma para programar aplicaciones que trabajen con redes.9 C++ Sockets Library es una biblioteca de clases en C++ bajo licencia GPL que 'mapea' el berkeley sockets C API, y funciona tanto en algunos sistemas Unix como en Win32.10 GNU Common C++ es una biblioteca de propósito general que incluye funciones de red.11 HackNet es una biblioteca de comunicaciones para crear juegos multijugador.12 DirectPlay simplifica el acceso de las aplicaciones a los servicios de comunicación. Es una componente de DirectX.

CAPAS

CAPA DE APLICACION
CAPA DE TRANSPORTE
La capa de transporte TCP/IP garantiza que los paquetes lleguen en secuencia y sin errores, al intercambiar la confirmación de la recepción de los datos y retransmitir los paquetes perdidos. Este tipo de comunicación se conoce como transmisión de punto a punto.
CAPA DE INTERNET
La capa de Internet es un grupo de métodos, protocolos y especificaciones de interconexión de redes en el conjunto de protocolos de Internet que se utilizan para transportar paquetes de red desde el host de origen a través de los límites de la red; si es necesario, al host de destino especificado por una dirección IP.
CAPA DE ENLACE DE DATOS
La capa de enlace de datos (también denominada capa de enlace, capa de interfaz de red o capa física) es la que maneja las partes físicas del envío y recepción de datos mediante el cable Ethernet, la red inalámbrica, la tarjeta de interfaz de red, el controlador del dispositivo en el equipo, etcétera.
LAS CUATRO CAPAS DEL MODELO TCP/IP TCP/IP es un protocolo de enlace de datos que se utiliza en Internet. Su modelo se divide en cuatro capas diferenciadas. Cuando se emplean juntas, es posible referirse a ellas como un paquete de protocolos.

DEFINICION

IP ( PROTOCOLO DE INTERNET)
VENTAJAS Y DESVENTAJAS

VENTAJAS Reduce los costos de operación a los proveedores de servicios de Internet (ISP). Reduce la cantidad de IP asignadas (de forma fija) inactivas. El usuario puede reiniciar el modem o router para que le sea asignada otra IP y así evitar las restricciones que muchas webs ponen a sus servicios gratuitos de descarga o visionado multimedia en línea. DESVENTAJA Obliga a depender de servicios que redirigen un host a una IP.

DIRECCION IP

Las direcciones IPV4 se expresan mediante un número binario de 32 bits permitiendo un espacio de direcciones de hasta 4.294.967.296 (232) direcciones posibles.34 Las direcciones IP se pueden expresar como números de notación decimal: se dividen los 32 bits de la dirección en cuatro octetos. El valor decimal de cada octeto está comprendido en el intervalo de 0 a 255 [el número binario de 8 bits más alto es 11111111 y esos bits, de derecha a izquierda, tienen valores decimales de 1, 2, 4, 8, 16, 32, 64 y 128, lo que suma 255]. En la expresión de direcciones IPv4 en decimal se separa cada octeto por un carácter único ".". Cada uno de estos octetos puede estar comprendido entre 0 y 255. Ejemplo de representación de dirección IPv4: 10.128.1.253, 192.168.255.254/18 En las primeras etapas del desarrollo del Protocolo de Internet,5 los administradores de Internet interpretaban las direcciones IP en dos partes, los primeros 8 bits para designar la dirección de red y el resto para individualizar la computadora dentro de la red. Este método pronto probó ser inadecuado, cuando se comenzaron a agregar nuevas redes a las ya asignadas. En 1981 el direccionamiento internet fue revisado y se introdujo la arquitectura de clases. (classful network architecture).6 En esta arquitectura hay tres clases de direcciones IP que una organización puede recibir de parte de la Internet Corporation for Assigned Names and Numbers (ICANN): clase A, clase B y clase C.7 En una red de clase A, se asigna el primer octeto para identificar la red, reservando los tres últimos octetos (24 bits) para que sean asignados a los hosts, 8 de modo que la cantidad máxima de hosts es 224 - 2 (se excluyen la dirección reservada para broadcast (últimos octetos a 1) y de red (últimos octetos a 0)), es decir, 16 777 214 hosts. En una red de clase B, se asignan los dos primeros octetos para identificar la red, reservando los dos octetos finales (16 bits) para que sean asignados a los hosts,8 de modo que la cantidad máxima de hosts por cada red es 216 - 2, o 65 534 hosts. En una red de clase C, se asignan los tres primeros octetos para identificar la red, reservando el octeto final (8 bits) para que sea asignado a los hosts,8 de modo que la cantidad máxima de hosts por cada red es 28 - 2, o 254 hosts.

IP La dirección IP es una etiqueta numérica, por ejemplo "192.0.10.1" que identifica, de manera lógica y jerárquica, a una interfaz en la red (elemento de comunicación/conexión) de un dispositivo (computadora, laptop, teléfono inteligente) que utilice el Protocolo de Internet (Internet Protocol) o que corresponde al nivel de red del modelo TCP/IP. Una dirección IP tiene dos funciones principales: identificación de la interfaz de red y direccionamiento para su ubicación. La dirección IP no debe confundirse con la dirección MAC, que es un identificador de 48 bits expresado en código hexadecimal, para identificar de forma única la tarjeta de red y no depende del protocolo de conexión utilizado en la red. La dirección IP puede cambiar a menudo debido a cambios en la red, o porque el dispositivo encargado dentro de la red de asignar las direcciones IP, decida asignar otra IP (por ejemplo, con el protocolo DHCP). A esta forma de asignación de dirección IP se le denomina también dirección IP dinámica (normalmente abreviado como IP dinámica).1Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen la necesidad de una dirección IP fija (comúnmente, IP fija o IP estática). Esta no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red. Los dispositivos se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, para las personas es más fácil recordar un nombre de dominio que los números de la dirección IP. Los servidores de nombres de dominio DNS, "traducen" el nombre de dominio en una dirección IP. Si la dirección IP dinámica cambia, es suficiente actualizar la información en el servidor DNS. El resto de las personas seguirán accediendo al dispositivo por el nombre de dominio.
TCP ( PROTOCOLO DE CONTROL DE TRASMISION )
PUERTOS TCP

TCP usa el concepto de número de puerto para identificar a las aplicaciones emisoras y receptoras. Cada lado de la conexión TCP tiene asociado un número de puerto (de 16 bits sin signo, con lo que existen 65536 puertos posibles) asignado por la aplicación emisora o receptora. Los puertos son clasificados en tres categorías: 1. bien conocidos, 2. registrados, y 3. dinámicos/privados. Los puertos bien conocidos son asignados por la Internet Assigned Numbers Authority (IANA), van del 0 al 1023 y son usados normalmente por el sistema o por procesos con privilegios.4 Las aplicaciones que usan este tipo de puertos son ejecutadas como servidores y se quedan a la escucha de conexiones. Algunos ejemplos son: FTP (21), SSH (22), Telnet (23), SMTP (25) y HTTP (80). Los puertos registrados son normalmente empleados por las aplicaciones de usuario de forma temporal cuando conectan con los servidores, pero también pueden representar servicios que hayan sido registrados por un tercero (rango de puertos registrados: 1024 al 49151). Los puertos dinámicos/privados también pueden ser usados por las aplicaciones de usuario, pero este caso es menos común. Los puertos dinámicos/privados no tienen significado fuera de la conexión TCP en la que fueron usados (rango de puertos dinámicos/privados: 49152 al 65535, recordemos que el rango total de 2 elevado a la potencia 16, cubre 65536 números, del 0 al 65535).

VENTAJAS

Ventanas deslizantes TCP usa control de flujo para evitar que un emisor envíe datos de forma más rápida de la que el receptor puede recibirlos y procesarlos. El control de flujo es un mecanismo esencial en redes en las que se comunican computadoras con distintas velocidades de transferencia. Por ejemplo, si una PC envía datos a un dispositivo móvil que procesa los datos de forma lenta, el dispositivo móvil debe regular el flujo de datos. TCP usa una ventana deslizante para el control de flujo. En cada segmento TCP, el receptor especifica en el campo receive window la cantidad de bytes que puede almacenar en el búfer para esa conexión. El emisor puede enviar datos hasta esa cantidad. Para poder enviar más datos debe esperar que el receptor le envíe un ACK con un nuevo valor de ventana. El tamaño de la ventana de recepción TCP es la cantidad de datos recibidos (en bytes) que pueden ser metidos en el búfer de recepción durante la conexión. La entidad emisora puede enviar una cantidad determinada de datos pero antes debe esperar un asentimiento con la actualización del tamaño de ventana por parte del receptor. Un ejemplo sería el siguiente: un receptor comienza con un tamaño de ventana X y recibe Y bytes, entonces su tamaño de ventana será (X - Y) y el transmisor sólo podrá mandar paquetes con un tamaño máximo de datos de (X - Y) bytes. Los siguientes paquetes recibidos seguirán restando tamaño a la ventana de recepción. Esta situación seguirá así hasta que la aplicación receptora recoja los datos del búfer de recepción. Para una mayor eficiencia en redes de gran ancho de banda, debe ser usado un tamaño de ventana mayor. El campo TCP de tamaño de ventana controla el movimiento de datos y está limitado a 16 bits, es decir, a un tamaño de ventana de 65.535 bytes. Como el campo de ventana no puede expandirse se usa un factor de escalado. La escala de ventana TCP (TCP window scale) es una opción usada para incrementar el máximo tamaño de ventana desde 65.535 bytes, a 1 Gigabyte. La opción de escala de ventana TCP es usada solo durante la negociación en tres pasos que constituye el comienzo de la conexión. El valor de la escala representa el número de bits desplazados a la izquierda de los 16 bits que forman el campo del tamaño de ventana. El valor de la escala puede ir desde 0 (sin desplazamiento) hasta 14. Hay que recordar que un número binario desplazado un bit a la izquierda es como multiplicarlo en base decimal por 2.

CARACTERISTICAS DEL TCP

Características del TCP Permite colocar los segmentos nuevamente en orden cuando vienen del protocolo IP. Permite el monitoreo del flujo de los datos y así evita la saturación de la red. Permite que los datos se formen en segmentos de longitud variada para "entregarlos" al protocolo IP. Permite multiplexar los datos, es decir, que la información que viene de diferentes fuentes (por ejemplo, aplicaciones) en la misma línea pueda circular simultáneamente. Por último, permite comenzar y finalizar la comunicación amablemente.

El protocolo de control de transmisión (TCP) es, al igual que el protocolo UDP como el SCTP, un protocolo de Internet que está ubicado en la capa de transporte del modelo OSI. El objetivo del protocolo TCP es crear conexiones dentro de una red de datos compuesta por redes de computadoras para intercambiar datos. Además, en cuanto a su funcionamiento, garantiza que los datos serán entregados en su destino sin errores y en el mismo orden en que se transmitieron. También proporciona un mecanismo para distinguir distintas aplicaciones dentro de una misma máquina, a través del concepto de puerto. TCP da soporte a muchas de las aplicaciones más populares de Internet (navegadores, intercambio de ficheros, clientes FTP, etc.) y protocolos de aplicación HTTP, SMTP, SSH y FTP.