类别 全部 - distribución - muestreo - sistemático - teorema

作者:Jared Velazquez Bernal 3 年以前

573

Capitulo 8. Métodos de muestreo y teorema central del límite

El estudio de los métodos de muestreo y el teorema central del límite es esencial para comprender cómo se pueden hacer inferencias sobre una población a partir de una muestra. El error de muestreo se refiere a la diferencia entre el estadístico de una muestra y el parámetro de la población.

Capitulo 8. Métodos de muestreo y    teorema 
central del límite

Capitulo 8. Métodos de muestreo y teorema central del límite

“Error” de muestreo

es poco factible que la desviación estándar de la muestra sea exactamente igual a la de la población; por lo tanto, se puede esperar una diferencia entre un estadístico de la muestra y el parámetro de la población correspondiente; la cual recibe el nombre de error de muestreo.
Diferencia entre el estadístico de una muestra y el parámetro de la población correspondiente.

Distribución muestral de la media

Si se organizan las medias de todas las muestras posibles de 5 días en una distribución de probabilidad, el resultado recibe el nombre de distribución muestral de la media.
Distribución de probabilidad de todas las posibles medias de las muestras de un determinado tamaño muestral de la población.

Teorema central del límite

El teorema central del límite hace hincapié en que, en el caso de muestras aleatorias grandes, la forma de la distribución muestral de la media se aproxima a la distribución de probabilidad normal. La aproximación es más exacta en el caso de muestras grandes que en el de muestras pequeñas; lo cual es una de las conclusiones más útiles de la estadística porque permite razonar sobre la distribución de las medias muestrales sin ninguna información acerca de la forma de la distribución de la población de la que se toma la muestra.
Si todas las muestras de un tamaño en particular se seleccionan de cualquier población, la distribución muestral de la media se aproxima a una distribución normal; esta mejora con muestras más grandes

Muestreo aleatorio simple

Muestra seleccionada de manera que cada elemento o individuo de la población tenga las mismas posibilidades de que se le incluya.

Muestreo por conglomerados

Este es otro tipo común de muestreo; a menudo se emplea para reducir el costo de muestrear una población dispersa en cierta área geográfica.
La población se divide en conglomerados a partir de los límites naturales geográficos u otra clase. A continuación, estos se seleccionan al azar y se toma una muestra de forma aleatoria con elementos de cada grupo.

Muestreo aleatorio estratificado

Elmuestreo aleatorio estratificado garantiza que cada grupo o estrato se encuentre representado en la muestra.
Una población se divide en subgrupos, denominados estratos, y se selecciona al azar una muestra de cada uno.

Muestreo aleatorio sistemático

El muestreo aleatorio simple se utiliza para seleccionar los días, los horarios y el punto de partida; pero el procedimiento sistemático se emplea para seleccionar al cliente real.
Se selecciona un punto aleatorio de inicio y posteriormente se elige cada k-ésimo miembro de la población.

Razones para muestrear

Cuando se estudian las características de una población, existen diversas razones prácticas para preferir algunas partes (o muestras) de esta para observar y medir
5. Los resultados de la muestra son adecuados.
4. Algunas pruebas son de naturaleza destructiva.
3. Es imposible verificar de manera física todos los elementos de la población.
2. El costo de estudiar todos los elementos de una población resulta prohibitivo.
1. Establecer contacto con toda la población requiere mucho tiempo.