Kategóriák: Minden - comunes - factorización - términos - trinomio

a Catalina Rodriguez 7 éve

775

herramienta web 2.0

La factorización de trinomios implica encontrar factores comunes y descomponer la expresión en términos más simples. Un trinomio es una expresión algebraica compuesta por tres términos y es común trabajar con trinomios cuadráticos de la forma ax^2 + bx + c.

herramienta web 2.0

Trinomio Cuadrado Perfecto

Regla para conocer si un trinomio es cuadrado perfecto. Un trinomio ordenado con relación a una letra es cuadrado perfecto cuando la primera y tercer letra son cuadrados perfectos (o tienen raíz cuadrada exacta) y son positivos y el segundo termino es el doble producto de sus raíces cuadradas.

Un Trinomio Cuadrado Perfecto, es un polinomio de tres términos que resulta de elevar al cuadrado un binomio.
25+10xy+x^2y^2=(5+xy)^2 1+a^10-2^a^5=(1-5^a)^5

Factorizacion

Trinomio

Maximo Factor Comun
Algunas veces los factores más fáciles de sacar de un trinomio son enteros. Por ejemplo el caso de, 6x^2 – 26x – 20. ¿Notas algún factor común entre los tres términos? a = 6, b = -26, y c = -20, y un factor común es 2. Usando de nuevo la Propiedad Distributiva, podemos sacar un factor de 2 de cada término y reescribir el trinomio como 2(3x^2 – 13x – 10).

Solucion2: 6x^2-26x-20 6x^2 – 30x + 4x – 20 (6x^2 – 30x) + (4x – 20) 6x(x – 5) + 4(x – 5) (x – 5)(6x + 4) (x – 5)[2(3x + 2)] 2(x – 5)(3x + 2) Solución 2(x – 5)(3x + 2)

Solucion 1: 6x^2-26x-20 2(3x2 – 13x – 10) 2(3x2 – 15x + 2x – 10) 2[(3x2 – 15x) + (2x – 10)] 2[3x(x – 5) + 2(x – 5)] 2[(x – 5)(3x + 2)] Solución 2(x – 5)(3x + 2)

Terminos negativos
También nos encontraremos con algunos problemas donde el término a es negativo, como en -4h^2 + 11h + 3. Normalmente tiene sentido factorizar el -1 como el primer paso de la factorización, porque al hacerlo cambiamos el signo de ax^2 de negativo a positivo, volviendo el trinomio resultante más fácil de factorizar.

-4h^2+11h+3 -1(4h^2 – 11h – 3) -1(4h^2 – 12h + 1h – 3) (-12 y 1) -1[(4h^2 – 12h) + (1h -3)] -1[4h(h – 3) + (h – 3)] -1[(h – 3)(4h + 1)] Solución -1(h – 3)(4h + 1)

Un trinomio es una expresión algebraica compuesta por tres términos. Lo más probable es que primero aprendas a factorizar trinomios "cuadráticos"; es decir, los trinomios escritos de la forma ax^2 + bx + c.
6z^2+11z+4 6z^2 + 3z + 8z + 4 (6z^2 + 3z) + (8z + 4) 3z(2z + 1) + (8z + 4) 3z(2z + 1) + 4(2z + 1) (2z + 1)(3z + 4)