Categorie: Tutti - decisiones - variables - lineales - análisis

da maria carmenza miranda gomez mancano 7 anni

555

CLACIFICACION DE LOS MODELOS DE OPTIMIZACION

Los modelos de optimización se pueden clasificar según su comportamiento en lineales o no lineales, así como en estáticos o dinámicos. Esta clasificación permite un mejor análisis de diversas situaciones y facilita la toma de decisiones, ayudando a evitar errores.

CLACIFICACION DE LOS MODELOS DE OPTIMIZACION

2- CLASIFICACIÓN DE LOS MODELOS DE OPTIMIZACIÓN: Estos modelos pueden representar varios sistemas los cuales muestran un comportaniento Lineal o no lineal, estatico o dinamico

PUNTO 3- el uso de los modelos nos permite un mejor análisis de las diferentes situaciones, adicional mente los modelos nos ayudan a la toma de decisiones y evitar errores

BIBLIOGRAFIA https://prezi.com/bonabp8zukrq/modelo-estatico-dinamico/, https://www.sopadebits.com/modelos-lineales-regresion-lineal

ALGUNOS MODELOS SEGÚN WINSTON 2005 SON:

MODELOS DETERMINÍSTICOS Y ESTOCASTICOS
Modelo Estócastico: Por el contrario, en los modelos estocásticos también conocidos como modelos probabilísticos, algún elementó no se conoce con anticipación, incorporando así la incertidumbre
Modelos Deterministicos: Los modelos determinísticos son aquellos donde se supone que los datos se conocen con certeza, es decir, se supone que cuando el modelo sea analizado se tiene disponible toda la información necesaria para la toma de decisiones.
MODELO ENTEROS Y NO ENTEROS
Modelos NO enteros: cuando todas las variables de decisión son libres para asumir valores fraccinarios
Modelos enteros: Los modelos de programación entera son una extensión de los modelos lineales en los que algunas variables toman valores enteros. Con frecuencia las variables enteras sólo toman valores en 0-1, ya que este tipo de variables permiten representar condiciones lógicas.
MODELOS ESTÁTICOS Y DINÁMICO:
Modelo Dinámico: las características que muestran este modelo es el cambio que presentan las variables en función del tiempo, pronósticos y programación dinamica
Modelo Estático: el modelo Estático es donde las las variables de decisión no requieren sucesiones de decisiones para periodos múltiples y esta no manejan la variable tiempo, por que representa a un sistema en un punto en particular
MODELOS LINEALES O NO LINEALES:
Modelos No Lineales: NO LINEAL se puede definir como un ajuste a cualquier modelo diferente del modelo de una LINEA RECTA.
Modelos lineales: Cuando las variables de decisión aparecen en la,función objetivo y en las restricciones de un modulo de optimizacion, se multiplican por contantes y acomodadas en forma de suma; este modelo es el llamado lineal, Los modelos lineales son un tipo de estadística multivariante (o multivariable), pero ni mucho menos el único. El análisis multivariante se centra en estudiar conjuntos de variables y su peso en los análisis para poder descartar las menos representativas. En el caso de los modelos lineales se parte de la base que existe un proceso (debido a una secuencia de causas) que genera el efecto a analizar, y en el cual intervienen una serie de perturbaciones aleatorias ajenas al proceso, y denominadas error.l

Subtema