によって Amber Mohammad 2年前.
99
もっと見る
∫
Indefinite Integral Properties:
∫ 1 dx = x + C ∫ a dx = ax + C ∫ xn dx = ((xn+1)/(n+1)) + C ; n ≠ 1 ∫ sin x dx = – cos x + C ∫ cos x dx = sin x + C ∫ sec2x dx = tan x + C ∫ cosec2x dx = -cot x + C ∫ sec x tan x dx = sec x + C ∫ cosec x cot x dx = -cosec x + C ∫ (1/x) dx = ln |x| + C ∫ ex dx = ex + C ∫ ax dx = (ax/ln a) + C ; a > 0, a ≠ 1
Function: ∫f(x) dx = F(x) + C
Function: ∫ab f(x) dx = F(b)-F(a)
Definite Integral properties:
∫ab f(x) dx = ∫ab f(t) d(t) ∫ab f(x) dx = – ∫ba f(x) dx ∫aa f(x) dx = 0 ∫ab f(x) dx = ∫ac f(x) dx + ∫cb f(x) dx ∫ab f(x) dx = ∫ab f(a + b – x) dx ∫0a f(x) dx = f(a – x) dx
∫ab
Note: "C" is simply nothing but a constant
f′(x) = u′(x) × v(x) + u(x) × v′(x)
f'(x) = (u'(x)*v(x)-u(x)*v'(x))/(v(x))^2
dy/dx = (dy/du) × (du/dx)
f'(x)=u'(x)-v'(x)
f'(x)=u'(x)+v'(x)
-csc^2 x
sec x tan x
-csc x cot x
sec^2 x
-sin x
cos x