カテゴリー 全て - masa - longitud - funciones - péndulo

によって Juan Pablo Arias Aguirre 2年前.

158

FUNCIONES NO LINEALES APLICACIÓN EXPERIMENTAL PÉNDULO SIMPLE

En el estudio de las funciones no lineales, se explora cómo estas difieren de las funciones lineales debido a sus ecuaciones con variables elevadas a exponentes mayores a uno y posibles discontinuidades.

FUNCIONES NO LINEALES

APLICACIÓN EXPERIMENTAL PÉNDULO SIMPLE

FUNCIONES NO LINEALES APLICACIÓN EXPERIMENTAL PÉNDULO SIMPLE

Esta definido como:

Aquellas en las que la gráfica de la función no es una línea recta.
Se identifican por:

ya que sus ecuaciones tienen variables con exponentes mayores a 1 y pueden presentar algún tipo de discontinuidad

Un ejemplo es:

El periodo de oscilación de un cilindro metálico en un péndulo simple

Para este experimento se calcula:

medidas indirectas

el resultado de emplear una expresión matemática

Las magnitudes halladas va a ser:

La función de la regresión no lineal

Vd = k (Vi)ª

ecuación 3

La cual se le aplicara logaritmos naturales y sus respectivas propiedades

ln Vd = ln K + a ln Vi

ecuación 4

esta conformada por:

Vi

donde:

Vi -> L

L es La longitud del péndulo

a

usando la ecuación 7

K

se halla:

k = eᵇ

ecuación 5

b

es la ecuación 6

e

Es el número de Euler

X = Desplazamiento horizontal

ecuación 2

X̅ = El promedio o valor medio

ecuación 1

medidas directas

definidas como:

aquellas donde el instrumento de medición mide directamente la magnitud desconocida

La magnitud medida es:

El periodo que oscila el cilindro metálico

utilizando:

cronometro Pasco

El tiempo de oscilación depende de:

Longitud

La longitud del péndulo (L) la constituye la distancia en (m) desde el punto de suspensión O hasta el centro de masa del objeto que oscila

La longitud del péndulo va a ser de:

0,80m

0,60 m

0,45 m

0,35 m

0,25 m

0,15 m

Amplitud

La amplitud de la oscilación (X) se define como el desplazamiento horizontal de la masa con relación al punto de equilibrio o posición intermedia medido en (m)

La Amplitud de la oscilación va a ser: X

donde

X se halla de la ecuación 2 con θ = 5°

Masa

que es:

La masa es magnitud física que expresa la cantidad de materia de un cuerpo

para este experimento

La masa de un cilindro de cobre, aluminio o acero.