av Seongbin Hwang 11 måneder siden
65
Mer som dette
tan^2(x) = (1-cos(2x)) / (1+cos(2x))
cos^2(x) = (1+cos (2x)) / 2
sin^2(x) = (1-cos(2x))/2
tan (x/2) = +- √ (1 - cos (x)) / 1+ cos (x)
cos (x/2) = +- √ (1+cos (x))/2
sin (x/2) = +- √ (1-cos(x))/2
tan2x = (2 tan(x)) / 1-tan^2(x)
cos2x = cos^2(x) - sin^2 (x)
sin2x = 2sinxcosx
Tan (A+-B) = (Tan A +- Tan B) / (1-+ Tan A TanB)
Cos (A+-B) = CosA CosB -+ SinA SinB
Sin (A+-B) = Sin A CosB +- Sin B Cos A
1 + cot^2 (x) = csc^2 (x)
tan^2 (x) + 1 = sec^2 (x)
cos^2 (x) = 1 - sin^2 (x)
sin^2 (x) = 1 - cos^2 (x)
sin^2 (x) + cos^2 (x) = 1
Adjacent / Opposite
Opposite / Adjacent
hypotenuse / adjacent
Adjacent/ hypotenuse
hypotenuse/opposite
opposite/ hypotenuse