por David Páez hace 1 año
98
Ver más
Cov(X,Y) / √(Var(x)Var(y))
M_x^n (t=0) = E(x^n)
M_x^n (t) = E(e^xt x^n)
Mx(t)=E(E^xt)
E[(X-μx)(Y-μy)]
Var(h(y)|X=x)
E[h^2(y)|X=x]-E^2[h(y)|X=x)
E[g(x,y)-Eg(x,y)]^2
E[g(x)|Y=y]
∫_(-∞)^∞〖g(x)f(X|Y=y)〗
∑_x〖g(x)f(X|Y=y)〗
Entonces
E[g(x)h(y)] = E[g(x)] E[h(y)]
∬_(-∞)^∞〖g(x,y)f(x,y)〗, caso continuo
∑_x∑_y〖g(x,y)f(x,y)〗; caso discreto