Luokat: Kaikki - frecuencia - ionosfera - modelos - entornos

jonka Darwin Heredia 6 vuotta sitten

185

Tarea 1 DHeredia

Se pueden utilizar modelos empíricos para estimar las pérdidas de propagación en función de varios parámetros como la distancia, la altura de las antenas, la frecuencia y la tipología del entorno.

Tarea 1 DHeredia

Tarea 1 Propagación

Desvanecimientos rápidos multicamino ydiversidad

En una situación real de comunicaciones móviles el campo incidente en la antena receptora es el resultado de la superposición de múltiples contribuciones: campos reflejados en edificios, campos difractados en las aristas o bordes de los edificios, componentes reflejadadas en el suelo, y componentes provenientes de múltiples reflexiones. Si se considera una situación como la de la figura 2.29 se comprende que al desplazarse el receptor del punto 1 al 2 las distintas contribuciones se sumaran con fases distintas, ya que cada una de ellas habrá recorrido una distancia distinta. De hecho sólo que la diferencia de camino recorrido sea de media longitud de onda (17 cm a 900 MHz), una componente que contribuía constructivamente se convierte en destructiva. Por tanto, un móvil al desplazarse observa fuertes variaciones en el nivel de señal recibido.

Caracterización estadística de las pérdidas de propagación

Los modelos empíricos sólo proporcionan el valor medio o esperado de las pérdidas de propagación para un entorno genérico en función de la distancia entre la estación base y el terminal. Sin embargo, es evidente que aún manteniendo la distancia a la estación base constante se observarán fluctuaciones en los niveles de señal en distintas ubicaciones del terminal móvil. Éstas se deben a las diferentes alturas de los edificios, orientación y características de las calles, etc. Por tanto, al describir una circunferencia en torno a una estación base se medirán variaciones en las pérdidas de propagación. Variaciones relativamente lentas en función de la distancia recorrida y que físicamente cabe asociarlas a la variación en el entorno. Dado

Modelos empíricos para el valor medio de las pérdidas de propagación. El modelo Okumura-Hata

Los modelos empíricos se basan en el ajuste de leyes de decaimiento de la potencia recibida en función de la distancia, altura de antenas, frecuencia y tipología del entorno a datos medidos. Evidentemente, mientras que ciertos parámetros como la frecuencia o la altura de las antenas son conocidos de forma unívoca otros, como la tipología del entorno son más difíciles de objetivar. Generalmente los modelos empíricos distinguen entre zonas urbanas muy densas, zonas urbanas de baja densidad y zonas rurales.

Modelización de la propagación en entornos complejos

Los modelos de propagación de las secciones anteriores son útiles para evaluar las pérdidas de propagación asociadas a los distintos efectos que se han descrito: reflexión en tierra, difracción por obstáculos, etc. Cuando el efecto dominante en las pérdidas de propagación es únicamente uno de ellos las permiten estimar adecuadamente. En entornos de propagación complejos en los que existe una superposición de varios efectos, el cálculo de las pérdidas de propagación debe abordarse de forma diferente. Considérese la situación de la figura 2.28 en la que se representa un escenario habitual en los servicios de comunicaciones móviles en entornos urbanos. En la mayoría de las ocasiones no existe visibilidad directa entre los dos extremos del enlace: la estación base y el terminal móvil.

Comunicaciones ionosféricas

La existencia de la ionosfera permite, tal como comprobó Marconi, las comunicaciones a grandes distancias. El efecto de la ionosfera es distinto para las diferentes bandas de frecuencias. A frecuencias bajas y muy bajas (bandas de LF y VLF) la ionosfera supone un cambio brusco en términos de λ del índice de refracción atmosférico. Esta variación abrupta produce una reflexión de la onda incidente en la parte baja de la ionosfera.

Influencia del campo magnético terrestre

En el análisis anterior no se ha considerado el efecto del campo magnético terrestre. Un plasma sometido a un campo magnético constante posee características anisótropas, de forma que la constante dieléctrica no es un escalar sino un tensor. El efecto más notable es que la constante de propagación es función de la polarización de la onda. En concreto la constante de propagación es distinta para una onda polarizada circularmente a derechas o a izquierdas. Esto produce una rotación en el plano de polarización de una onda linealmente polarizada.

Propagación en un medio ionizado

La propagación de ondas electromagnéticas en la ionosfera se puede modelar a partir de la propagación en plasmas. Un plasma es una región de espacio, con la permitividad eléctrica y la permeabilidad magnética del vacío, que contiene electrones libres. Un modelo simplificado es el de plasma frío, en el que se desprecia el movimiento de los electrones por causas térmicas. Un análisis más acorde con la realidad debe considerar la presencia de un campo magnético estático, de la misma manera que en la ionosfera existe el campo magnético terrestre.
ionosfera existe el campo magnético terrestre.
realidad debe considerar la presencia de un campo magnético estático, de la misma manera que en la
que se desprecia el movimiento de los electrones por causas térmicas. Un análisis más acorde con la
magnética del vacío, que contiene electrones libres. Un modelo simplificado es el de plasma frío, en el
en plasmas. Un plasma es una región de espacio, con la permitividad eléctrica y la permeabilidad
La propagación de ondas electromagnéticas en la ionosfera se puede modelar a partir de la propagación

Efecto de la ionosfera

En el mismo año 1902, Kennelly y Heaviside, de forma independiente, postularon la existencia de una capa ionizada en la parte alta de la atmósfera como la responsable de la reflexión de las ondas electromagnéticas, explicando de esta forma el mecanismo de propagación a grandes distancias.
El 12 de diciembre de 1901, Marconi consiguió realizar de forma satisfactoria la primera comunicación radiotelegráfica transatlántica cubriendo una distancia de 3.000 km entre Gales y Terranova, en el extremo oriental de Canadá. Unos años antes, Hertz había comprobado experimentalmente la existencia de ondas electromagnéticas, cuya naturaleza era similar a la de la luz. Por este motivo el éxito de Marconi resultaba inexplicable considerando que las ondas electromagnéticas deben propagarse según trayectos rectilíneos y que la esfericidad de la tierra impedía la visibilidad directa.