par heng da Il y a 11 années
580
Plus de détails
有助于学生课后再巩固加强拓展学习。
几何画板,有助于学生课后再熟悉函数图像;
巩固学生对知识点的把握
习题:1、已知f(x)=(m2-m-1)xm+3是幂函数,求m的值。
(解:∵f(x)=(m2-m-1)xm+3是幂函数
幂函数形如y=xα
∴m2-m-1=1
m2-m-2=0
(m-2)(m+1)=0
m=2或m=-1
当m=2时,f(x)=x5;当m=-1时,f(x)=x2,均符合题意
综上所述,m=2或m=-1
)
2、已知幂函数图像f(x)经过点(3,27),则f(x)是(奇)函数(填“奇”或“偶”),单调递(增)(填“增”或“减”)。
(幂函数f(x)=xα过点(3,27),代入得出α=log327=3,即f(x)=x3。当α>0且α为奇数时函数图像为奇函数,单调递增。
)
以FLASH课件形式呈现一些幂函数的图像,要求学生通过观察图像寻找规律填写表格,从而掌握幂函数的图像这一知识点;
条件 定义域 值域 所在象限 奇偶性 在(0,+∞)单调性
α>0且α是整数 α为奇数 (-∞,+∞) (-∞,+∞) 一、三 奇函数 单调递增
α为偶数 (-∞,+∞) [0,+∞) 一、二 偶函数 单调递增
α>0且α是分数 分母为奇数 (-∞,+∞) (-∞,+∞) 一、三 奇函数 单调递增
分母为偶数 [0,+∞) [0,+∞) 一 单调递增
α=0 (-∞,0)∪(0,+∞) 1 一、二
α<0且α是整数 α为奇数 (-∞,0)∪(0,+∞) (-∞,0)∪(0,+∞) 一、三 奇函数 单调递减
α为偶数 (-∞,0)∪(0,+∞) (0,+∞) 一、二 偶函数 单调递减
α<0且α是分数 分母为奇数 (-∞,0)∪(0,+∞) (-∞,0)∪(0,+∞) 一、三 奇函数 单调递减
分母为偶数 (0,+∞) (0,+∞) 一 单调递减
fwfrwaetg
一般地,我们把形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数。(※注意:xα前面的系数是1,后面没有其他项)
习题:下列函数①y= ;②y=3x-2;③y=x4+x2;④y= ,其中是幂函数的是(①④)
(①可以写成y=x-3形式;②x前面多了系数,后面多了常数项;③不止一项;④可以写成y= 形式)
从学生熟悉的一次函数、二次函数等引入幂函数的定义
(问题:说出下列函数的名称
y=kx (k≠0) 正比例函数
y= (k≠0, x≠0) 反比例函数
y=kx+b (k≠0) 一次函数
y=ax2+bx+c (a≠0) 二次函数
y=c (c为常数) 常值函数
y=ax (a>0且a≠1) 指数函数
y=logax (a>0且a≠1) 对数函数
y=xα(α∈R) 我们见过吗?
)